ﻻ يوجد ملخص باللغة العربية
For linear elastic problems, it is well-known that mesh generation dominates the total analysis time. Different types of methods have been proposed to directly or indirectly alleviate this burden associated with mesh generation. We review in this paper a subset of such methods centred on tighter coupling between computer aided design (CAD) and analysis (finite element or boundary element methods). We focus specifically on frameworks which rely on constructing a discretisation directly from the functions used to describe the geometry of the object in CAD. Examples include B-spline subdivision surfaces, isogeometric analysis, NURBS-enhanced FEM and parametric-based implicit boundary definitions. We review recent advances in these methods and compare them to other paradigms which also aim at alleviating the burden of mesh generation in computational mechanics.
In this review an overview on some recent developments in deformation quantization is given. After a general historical overview we motivate the basic definitions of star products and their equivalences both from a mathematical and a physical point o
This is a survey on recent developments in Ricci flows.
This paper will appear in the Proceedings of the 1995 Santa Cruz Summer Institute. The paper is a survey of recent developments in the theory of toric varieties, including new constructions of toric varieties and relations to symplectic geometry, combinatorics and mirror symmetry.
Recent developments concerning oscillatory spacelike singularities in general relativity are taking place on two fronts. The first treats generic singularities in spatially homogeneous cosmology, most notably Bianchi types VIII and IX. The second dea
Radiogenic heating is a key component of the energy balance and thermal evolution of the Earth. It contributes to mantle convection, plate tectonics, volcanoes, and mountain building. Geo-neutrino observations estimate the present radiogenic power of