ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition from small to large world in growing networks

106   0   0.0 ( 0 )
 نشر من قبل Sergey Dorogovtsev
 تاريخ النشر 2007
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the global organization of growing networks in which a new vertex is attached to already existing ones with a probability depending on their age. We find that the network is infinite- or finite-dimensional depending on whether the attachment probability decays slower or faster than $(age)^{-1}$. The network becomes one-dimensional when the attachment probability decays faster than $(age)^{-2}$. We describe structural characteristics of these phases and transitions between them.



قيم البحث

اقرأ أيضاً

We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point re sistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, $l^{-alpha}$. In this case we find that the average effective system resistance diverges for any non-zero value of $alpha$.
88 - Luca DallAsta 2006
In this paper we analyze the effect of a non-trivial topology on the dynamics of the so-called Naming Game, a recently introduced model which addresses the issue of how shared conventions emerge spontaneously in a population of agents. We consider in particular the small-world topology and study the convergence towards the global agreement as a function of the population size $N$ as well as of the parameter $p$ which sets the rate of rewiring leading to the small-world network. As long as $p gg 1/N$ there exists a crossover time scaling as $N/p^2$ which separates an early one-dimensional-like dynamics from a late stage mean-field-like behavior. At the beginning of the process, the local quasi one-dimensional topology induces a coarsening dynamics which allows for a minimization of the cognitive effort (memory) required to the agents. In the late stages, on the other hand, the mean-field like topology leads to a speed up of the convergence process with respect to the one-dimensional case.
We investigate the multifractals of the normalized first passage time on one-dimensional small-world network with both reflecting and absorbing barriers. The multifractals is estimated from the distribution of the normalized first passage time charac trized by the random walk on the small-world network with three fractions of edges rewired randomly. Particularly, our estimate is the fractal dimension D_0 = 0.917, 0.926, 0.930 for lattice points L = 80 and a randomly rewired fraction p = 0.2. The numerical result is found to disappear multifractal properties in the regime p> p_c, where p_c is the critical rewired fraction.
The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researche rs have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.
The small-world transition is a first-order transition at zero density $p$ of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by $Delt a p sim L^{-d}$. Equivalently a ``persistence size $L^* sim p^{-1/d}$ can be defined in connection with finite-size effects. Assuming $L^* sim p^{-tau}$, simple rescaling arguments imply that $tau=1/d$. We confirm this result by extensive numerical simulation in one to four dimensions, and argue that $tau=1/d$ implies that this transition is first-order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا