ﻻ يوجد ملخص باللغة العربية
We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, $l^{-alpha}$. In this case we find that the average effective system resistance diverges for any non-zero value of $alpha$.
A dissipative stochastic sandpile model is constructed on one and two dimensional small-world networks with different shortcut densities $phi$ where $phi=0$ and $1$ represent a regular lattice and a random network respectively. In the small-world reg
We study the thermodynamic properties of spin systems with bond-disorder on small-world hypergraphs, obtained by superimposing a one-dimensional Ising chain onto a random Bethe graph with p-spin interactions. Using transfer-matrix techniques, we deri
We investigate supervised learning in neural networks. We consider a multi-layered feed-forward network with back propagation. We find that the network of small-world connectivity reduces the learning error and learning time when compared to the netw
In this paper we analyze the effect of a non-trivial topology on the dynamics of the so-called Naming Game, a recently introduced model which addresses the issue of how shared conventions emerge spontaneously in a population of agents. We consider in
We investigate the multifractals of the normalized first passage time on one-dimensional small-world network with both reflecting and absorbing barriers. The multifractals is estimated from the distribution of the normalized first passage time charac