ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning tunnelling spectroscopy of the vortex state in NbSe2 using a superconducting tip

243   0   0.0 ( 0 )
 نشر من قبل Jose G. Rodrigo
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The vortex electronic structure in the multiband superconductor NbSe2 is studied by means of Scanning Tunneling Spectroscopy (STS) using a superconducting tip. The use of a superconducting tip (Pb) as a probe provides an enhancement of the different features related to the DOS of NbSe2 in the tunneling conductance curves. This use allows the observation of rich patterns of electronic states in the conductance images around the vortex cores in a wide range of temperature, as well as the simultaneous acquisition of Josephson current images in the vortex state.



قيم البحث

اقرأ أيضاً

Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single vortex level, is of great importance. Among many technique s to study single vortices, scanning tunneling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex-clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single quantum vortices into desired nanoscale configurations.
66 - O. Dogru 2005
A percolation transition in the vortex state of a superconducting 2H-NbSe2 crystal is observed in the regime where vortices form a heterogeneous phase consisting of ordered and disordered domains. The transition is signaled by a sharp increase in cri tical current that occurs when the volume fraction of disordered domains, obtained from pulsed measurements of the current-voltage characteristics, reaches the value Pc= 0.26. Measurements on different vortex states show that while the temperature of the transition depends on history and measurement speed, the value of Pc and the critical exponent characterizing the approach to it, r =1.97 $pm$ 0.66, are universal.
Superconducting vortex cores have been extensively studied for magnetic fields applied perpendicular to the surface by mapping the density of states (DOS) through Scanning Tunneling Microscopy (STM). Vortex core shapes are often linked to the superco nducting gap anisotropy---quasiparticle states inside vortex cores extend along directions where the superconducting gap is smallest. The superconductor 2H-NbSe$_2$ crystallizes in a hexagonal structure and vortices give DOS maps with a sixfold star shape for magnetic fields perpendicular to the surface and the hexagonal plane. This has been associated to a hexagonal gap anisotropy located on quasi two-dimensional Fermi surface tubes oriented along the $c$ axis. The gap anisotropy in another, three-dimensional, pocket is unknown. However, the latter dominates the STM tunneling conductance. Here we measure DOS in magnetic fields parallel to the surface and perpendicular to the $c$ axis. We find patterns of stripes due to in-plane vortex cores running nearly parallel to the surface. The patterns change with the in-plane direction of the magnetic field, suggesting that the sixfold gap anisotropy is present over the whole Fermi surface. Due to a slight misalignment between the vector of the magnetic field and the surface, our images also show outgoing vortices. Their shape is successfully compared to detailed calculations of vortex cores in tilted fields. Their features merge with the patterns due to in plane vortices, suggesting that they exit at an angle with the surface. Measuring the DOS of vortex cores in highly tilted magnetic fields with STM can thus be used to study the superconducting gap structure.
We performed scanning tunneling spectroscopy of c-axis oriented YBCO films on top of which ferromagnetic SRO islands were grown epitaxially in-situ. When measured on the ferromagnetic islands, the density of states exhibits small gap-like features co nsistent with the expected short range penetration of the order parameter into the ferromagnet. However, anomalous split-gap structures are measured on the superconductor in the vicinity of ferromagnetic islands. This observation may provide evidence for the recently predicted induced magnetization in the superconductor side of a superconductor/ ferromagnet junction. The length scale of the effect inside the superconductor was found to be an order of magnitude larger than the superconducting coherence length. This is inconsistent with the theoretical prediction of a penetration depth of only a few superconducting coherence lengths. We discuss a possible origin for this discrepancy.
We describe a new type of scanning probe microscope based on a superconducting quantum interference device (SQUID) that resides on the apex of a sharp tip. The SQUID-on-tip is glued to a quartz tuning fork which allows scanning at a tip-sample separa tion of a few nm. The magnetic flux sensitivity of the SQUID is 1.8 {mu}_0/Hz^{1/2} and the spatial resolution is about 200 nm, which can be further improved. This combination of high sensitivity, spatial resolution, bandwidth, and the very close proximity to the sample provides a powerful tool for study of dynamic magnetic phenomena on the nanoscale. The potential of the SQUID-on-tip microscope is demonstrated by imaging of the vortex lattice and of the local AC magnetic response in superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا