ترغب بنشر مسار تعليمي؟ اضغط هنا

A Simple Characterization of Strategic Behaviors in Broadcast Channels

89   0   0.0 ( 0 )
 نشر من قبل Yi Su
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the problem of resource allocation among two competing users sharing a binary symmetric broadcast channel. We model the interaction between autonomous selfish users in the resource allocation and analyze their strategic behavior in manipulating the allocation outcome. We analytically show that users will improve their performance (i.e. gain higher allocated rates) if they have more information about the strategy of the competing user.



قيم البحث

اقرأ أيضاً

In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of s ecret communication over a Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with emph{information-theoretic secrecy}. That is, each user would like to obtain its own confidential message in a reliable and safe manner. This communication model is referred to as the multi-antenna Gaussian broadcast channel with confidential messages (MGBC-CM). Under this communication scenario, a secret dirty-paper coding scheme and the corresponding achievable secrecy rate region are first developed based on Gaussian codebooks. Next, a computable Sato-type outer bound on the secrecy capacity region is provided for the MGBC-CM. Furthermore, the Sato-type outer bound proves to be consistent with the boundary of the secret dirty-paper coding achievable rate region, and hence, the secrecy capacity region of the MGBC-CM is established. Finally, a numerical example demonstrates that both users can achieve positive rates simultaneously under the information-theoretic secrecy requirement.
A secret-key generation scheme based on a layered broadcasting strategy is introduced for slow-fading channels. In the model considered, Alice wants to share a key with Bob while keeping the key secret from Eve, who is a passive eavesdropper. Both Al ice-Bob and Alice-Eve channels are assumed to undergo slow fading, and perfect channel state information (CSI) is assumed to be known only at the receivers during the transmission. In each fading slot, Alice broadcasts a continuum of coded layers and, hence, allows Bob to decode at the rate corresponding to the fading state (unknown to Alice). The index of a reliably decoded layer is sent back from Bob to Alice via a public and error-free channel and used to generate a common secret key. In this paper, the achievable secrecy key rate is first derived for a given power distribution over coded layers. The optimal power distribution is then characterized. It is shown that layered broadcast coding can increase the secrecy key rate significantly compared to single-level coding.
This paper considers the problem of secret communication over a two-receiver multiple-input multiple-output (MIMO) Gaussian broadcast channel. The transmitter has two independent, confidential messages and a common message. Each of the confidential m essages is intended for one of the receivers but needs to be kept perfectly secret from the other, and the common message is intended for both receivers. It is shown that a natural scheme that combines secret dirty-paper coding with Gaussian superposition coding achieves the secrecy capacity region. To prove this result, a channel-enhancement approach and an extremal entropy inequality of Weingarten et al. are used.
The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast C hannel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the Partially Cooperative RBC is degraded, the achievable rate region is shown to be tight and provides the capacity region. Gaussian Partially Cooperative RBCs and Partially Cooperative RBCs with feedback are further studied. In the second channel model being studied in the paper, the Fully Cooperative Relay Broadcast Channel, both users can act as relay nodes and transmit to each other through relay links. This is a more general model than the Partially Cooperative RBC. All the results for Partially Cooperative RBCs are correspondingly generalized to the Fully Cooperative RBCs. It is further shown that the AWGN Fully Cooperative RBC has a larger achievable rate region than the AWGN Partially Cooperative RBC. The results illustrate that relaying and user cooperation are powerful techniques in improving the capacity of broadcast channels.
This paper considers the problem of secret communication over a two-receiver multiple-input multiple-output (MIMO) Gaussian broadcast channel. The transmitter has two independent messages, each of which is intended for one of the receivers but needs to be kept asymptotically perfectly secret from the other. It is shown that, surprisingly, under a matrix power constraint both messages can be simultaneously transmitted at their respective maximal secrecy rates. To prove this result, the MIMO Gaussian wiretap channel is revisited and a new characterization of its secrecy capacity is provided via a new coding scheme that uses artificial noise and random binning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا