ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Antenna Gaussian Broadcast Channels with Confidential Messages

209   0   0.0 ( 0 )
 نشر من قبل Ruoheng Liu
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of secret communication over a Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with emph{information-theoretic secrecy}. That is, each user would like to obtain its own confidential message in a reliable and safe manner. This communication model is referred to as the multi-antenna Gaussian broadcast channel with confidential messages (MGBC-CM). Under this communication scenario, a secret dirty-paper coding scheme and the corresponding achievable secrecy rate region are first developed based on Gaussian codebooks. Next, a computable Sato-type outer bound on the secrecy capacity region is provided for the MGBC-CM. Furthermore, the Sato-type outer bound proves to be consistent with the boundary of the secret dirty-paper coding achievable rate region, and hence, the secrecy capacity region of the MGBC-CM is established. Finally, a numerical example demonstrates that both users can achieve positive rates simultaneously under the information-theoretic secrecy requirement.



قيم البحث

اقرأ أيضاً

This paper considers the problem of secret communication over a two-receiver multiple-input multiple-output (MIMO) Gaussian broadcast channel. The transmitter has two independent, confidential messages and a common message. Each of the confidential m essages is intended for one of the receivers but needs to be kept perfectly secret from the other, and the common message is intended for both receivers. It is shown that a natural scheme that combines secret dirty-paper coding with Gaussian superposition coding achieves the secrecy capacity region. To prove this result, a channel-enhancement approach and an extremal entropy inequality of Weingarten et al. are used.
This paper considers the problem of secret communication over a two-receiver multiple-input multiple-output (MIMO) Gaussian broadcast channel. The transmitter has two independent messages, each of which is intended for one of the receivers but needs to be kept asymptotically perfectly secret from the other. It is shown that, surprisingly, under a matrix power constraint both messages can be simultaneously transmitted at their respective maximal secrecy rates. To prove this result, the MIMO Gaussian wiretap channel is revisited and a new characterization of its secrecy capacity is provided via a new coding scheme that uses artificial noise and random binning.
This paper presents two new results on multiple-input multiple-output (MIMO) Gaussian broadcast channels with confidential messages. First, the problem of the MIMO Gaussian wiretap channel is revisited. A matrix characterization of the capacity-equiv ocation region is provided, which extends the previous result on the secrecy capacity of the MIMO Gaussian wiretap channel to the general, possibly imperfect secrecy setting. Next, the problem of MIMO Gaussian broadcast channels with two receivers and three independent messages: a common message intended for both receivers, and two confidential messages each intended for one of the receivers but needing to be kept asymptotically perfectly secret from the other, is considered. A precise characterization of the capacity region is provided, generalizing the previous results which considered only two out of three possible messages.
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of s ecret communication over the Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with information-theoretic secrecy. That is, each user would like to obtain its own confidential message in a reliable and safe manner. This communication model is referred to as the multi-antenna Gaussian broadcast channel with confidential messages (MGBC-CM). Under this communication scenario, a secret dirty-paper coding scheme and the corresponding achievable secrecy rate region are first developed based on Gaussian codebooks. Next, a computable Sato-type outer bound on the secrecy capacity region is provided for the MGBC-CM. Furthermore, the Sato-type outer bound prove to be consistent with the boundary of the secret dirty-paper coding achievable rate region, and hence, the secrecy capacity region of the MGBC-CM is established. Finally, two numerical examples demonstrate that both users can achieve positive rates simultaneously under the information-theoretic secrecy requirement.
The fading cognitive multiple-access channel with confidential messages (CMAC-CM) is investigated, in which two users attempt to transmit common information to a destination and user 1 also has confidential information intended for the destination. U ser 1 views user 2 as an eavesdropper and wishes to keep its confidential information as secret as possible from user 2. The multiple-access channel (both the user-to-user channel and the user-to-destination channel) is corrupted by multiplicative fading gain coefficients in addition to additive white Gaussian noise. The channel state information (CSI) is assumed to be known at both the users and the destination. A parallel CMAC-CM with independent subchannels is first studied. The secrecy capacity region of the parallel CMAC-CM is established, which yields the secrecy capacity region of the parallel CMAC-CM with degraded subchannels. Next, the secrecy capacity region is established for the parallel Gaussian CMAC-CM, which is used to study the fading CMAC-CM. When both users know the CSI, they can dynamically change their transmission powers with the channel realization to achieve the optimal performance. The closed-form power allocation function that achieves every boundary point of the secrecy capacity region is derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا