We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193.
The lateral Casimir-Polder force between an atom and a corrugated surface should allow one to study experimentally non trivial geometrical effects in quantum vacuum. Here, we derive the theoretical expression of this force in a scattering approach th
at accounts for the optical properties of the corrugated surface. We show that large corrections to the ``proximity force approximation could be measured using present-day technology with a Bose-Einstein condensate used as a vacuum field sensor.
We propose an experimentally realizable quantum spin model that exhibits fast scrambling, based on non-local interactions which couple sites whose separation is a power of 2. By controlling the relative strengths of deterministic, non-random coupling
s, we can continuously tune from the linear geometry of a nearest-neighbor spin chain to an ultrametric geometry in which the effective distance between spins is governed by their positions on a tree graph. The transition in geometry can be observed in quench dynamics, and is furthermore manifest in calculations of the entanglement entropy. Between the linear and treelike regimes, we find a peak in entanglement and exponentially fast spreading of quantum information across the system. Our proposed implementation, harnessing photon-mediated interactions among cold atoms in an optical cavity, offers a test case for experimentally observing the emergent geometry of a quantum many-body system.
In this paper, we will describe a new factorization algorithm based on the continuous representation of Gauss sums, generalizable to orders j>2. Such an algorithm allows one, for the first time, to find all the factors of a number N in a single run w
ithout precalculating the ratio N/l, where l are all the possible trial factors. Continuous truncated exponential sums turn out to be a powerful tool for distinguishing factors from non-factors (we also suggest, with regard to this topic, to read an interesting paper by S. Woelk et al. also published in this issue [Woelk, Feiler, Schleich, J. Mod. Opt. in press]) and factorizing different numbers at the same time. We will also describe two possible M-path optical interferometers, which can be used to experimentally realize this algorithm: a liquid crystal grating and a generalized symmetric Michelson interferometer.
Magnetic resonance in an ensemble of laser-cooled trapped Rb atoms is excited using a micro- cantilever with a magnetic tip. The cantilever is mounted on a multi-layer chip designed to capture, cool, and magnetically transport cold atoms. The couplin
g is observed by measuring the loss from a magnetic trap as the oscillating cantilever induces Zeeman state transitions in the atoms. Interfacing cold atoms with mechanical devices could enable probing and manipulating atomic spins with nanometer spatial resolution and single-spin sensitivity, leading to new capabilities in quantum computation, quantum simulation, or precision sensing.
Low-order quantum resonances manifested by directed currents have been realized with cold atoms. Here we show that by increasing the strength of an experimentally achievable delta-kicking ratchet potential, quantum resonances of a very high order may
naturally emerge and can induce larger ratchet currents than low-order resonances, with the underlying classical limit being fully chaotic. The results offer a means of controlling quantum transport of cold atoms.