ﻻ يوجد ملخص باللغة العربية
We show that quantum wavepackets exhibit a sharp macroscopic peak as they spread in the vicinity of the critical point of the Anderson transition. The peak gives a direct access to the mutifractal properties of the wavefunctions and specifically to the multifractal dimension $d_2$. Our analysis is based on an experimentally realizable setup, the quantum kicked rotor with quasi-periodic temporal driving, an effectively 3-dimensional disordered system recently exploited to explore the physics of the Anderson transition with cold atoms.
Using a three-frequency one-dimensional kicked rotor experimentally realized with a cold atomic gas, we study the transport properties at the critical point of the metal-insulator Anderson transition. We accurately measure the time-evolution of an in
We study the box-measure correlation function of quantum states at the Anderson transition point with taking care of anomalously localized states (ALS). By eliminating ALS from the ensemble of critical wavefunctions, we confirm, for the first time, t
We study the level-spacing distribution function $P(s)$ at the Anderson transition by paying attention to anomalously localized states (ALS) which contribute to statistical properties at the critical point. It is found that the distribution $P(s)$ fo
We propose a generalization of multifractal analysis that is applicable to the critical regime of the Anderson localization-delocalization transition. The approach reveals that the behavior of the probability distribution of wavefunction amplitudes i
We study the dynamics of the many-body atomic kicked rotor with interactions at the mean-field level, governed by the Gross-Pitaevskii equation. We show that dynamical localization is destroyed by the interaction, and replaced by a subdiffusive behav