ترغب بنشر مسار تعليمي؟ اضغط هنا

One-loop Self-energy and Counterterms in a Massive Yang-Mills Theory based on the Nonlinearly Realized Gauge Group

234   0   0.0 ( 0 )
 نشر من قبل Daniele Bettinelli
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we evaluate the self-energy of the vector mesons at one loop in our recently proposed subtraction scheme for massive nonlinearly realized SU(2) Yang-Mills theory. We check the fulfillment of physical unitarity. The resulting self-mass can be compared with the value obtained in the massive Yang-Mills theory based on the Higgs mechanism, consisting in extra terms due to the presence of the Higgs boson (tadpoles included). Moreover we evaluate all the one-loop counterterms necessary for the next order calculations. By construction they satisfy all the equations of the model (Slavnov-Taylor, local functional equation and Landau gauge equation). They are sufficient to make all the one-loop amplitudes finite through the hierarchy encoded in the local functional equation.



قيم البحث

اقرأ أيضاً

182 - Yi-Jian Du , Bo Feng , Chih-Hao Fu 2014
In this work, we extend the construction of dual color decomposition in Yang-Mills theory to one-loop level, i.e., we show how to write one-loop integrands in Yang-Mills theory to the dual DDM-form and the dual trace-form. In dual forms, integrands a re decomposed in terms of color-ordered one-loop integrands for color scalar theory with proper dual color coefficients.In dual DDM decomposition, The dual color coefficients can be obtained directly from BCJ-form by applying Jacobi-like identities for kinematic factors. In dual trace decomposition, the dual trace factors can be obtained by imposing one-loop KK relations, reflection relation and their relation with the kinematic factors in dual DDM-form.
126 - Yi-Jian Du , Hui Luo 2012
BCJ relation reveals a dual between color structures and kinematic structure and can be used to reduce the number of independent color-ordered amplitudes at tree level. Refer to the loop-level in Yang-Mills theory, we investigate the similar BCJ rela tion in this paper. Four-point 1-loop example in N = 4 SYM can hint about the relation of integrands. Five-point example implies that the general formula can be proven by unitary- cut method. We will then prove a general BCJ relation for 1-loop integrands by D-dimension unitary cut, which can be regarded as a non-trivial generalization of the (fundamental)BCJ relation given by Boels and Isermann in [arXiv:1109.5888 [hep-th]] and [arXiv:1110.4462 [hep-th]].
A consistent strategy for the subtraction of the divergences in the nonlinearly realized Electroweak Model in the loop expansion is presented. No Higgs field enters into the perturbative spectrum. The local functional equation (LFE), encoding the inv ariance of the SU(2) Haar measure under local left SU(2) transformations, the Slavnov-Taylor identity, required in order to fulfill physical unitarity, and the Landau gauge equation hold in the nonlinearly realized theory. The quantization is performed in the Landau gauge for the sake of simplicity and elegance. The constraints on the admissible interactions arising from the Weak Power-Counting (WPC) are discussed. The same symmetric pattern of the couplings as in the Standard Model is shown to arise, as a consequence of the defining functional identities and the WPC. However, two independent mass invariants in the vector meson sector are possible, i.e. no tree-level Weinberg relation holds between the Z and W mass. Majorana neutrino masses can be implemented in the nonlinearly realized Electroweak Model in a way compatible with the WPC and all the symmetries of the theory.
The spectrum of the massive CPT-odd Yang-Mills propagator with Lorentz violation is performed at tree-level. The modification is due to mass terms generated by the exigence of multiplicative renormalizability of Yang-Mills theory with Lorentz violati on. The causality analysis is performed from group and front velocities for both, spacelike and timelike background tensors. It is show that, by demanding causality, it is always possible to define a physical sector for the gauge propagator. Hence, it is expected that the model is also unitary, if one takes the Faddeev-Popov ghost into account.
We present a lattice formulation of noncommutative Yang-Mills theory in arbitrary even dimensionality. The UV/IR mixing characteristic of noncommutative field theories is demonstrated at a completely nonperturbative level. We prove a discrete Morita equivalence between ordinary Yang-Mills theory with multi-valued gauge fields and noncommutative Yang-Mills theory with periodic gauge fields. Using this equivalence, we show that generic noncommutative gauge theories in the continuum can be regularized nonperturbatively by means of {it ordinary} lattice gauge theory with t~Hooft flux. In the case of irrational noncommutativity parameters, the rank of the gauge group of the commutative lattice theory must be sent to infinity in the continuum limit. As a special case, the construction includes the recent description of noncommutative Yang-Mills theories using twisted large $N$ reduced models. We study the coupling of noncommutative gauge fields to matter fields in the fundamental representation of the gauge group using the lattice formalism. The large mass expansion is used to describe the physical meaning of Wilson loops in noncommutative gauge theories. We also demonstrate Morita equivalence in the presence of fundamental matter fields and use this property to comment on the calculation of the beta-function in noncommutative quantum electrodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا