ﻻ يوجد ملخص باللغة العربية
The spectrum of the massive CPT-odd Yang-Mills propagator with Lorentz violation is performed at tree-level. The modification is due to mass terms generated by the exigence of multiplicative renormalizability of Yang-Mills theory with Lorentz violation. The causality analysis is performed from group and front velocities for both, spacelike and timelike background tensors. It is show that, by demanding causality, it is always possible to define a physical sector for the gauge propagator. Hence, it is expected that the model is also unitary, if one takes the Faddeev-Popov ghost into account.
We show that pure Yang-Mills theories with Lorentz violation are renormalizable to all orders in perturbation theory. To do this, we employ the algebraic renormalization technique. Specifically, we control the breaking terms with a suitable set of ex
Using the background field method, we study in a general covariant gauge the renormalization of the 6-dimensional Yang-Mills theory. This requires background gauge invariant counterterms, some of which do not vanish on shell. Such counterterms occur,
I review results recently obtained within the Hamiltonian approach to Yang-Mills theory in Coulomb gauge. In particular, I will present results for the ghost and gluon propagators and compare these with recent lattice data. Furthermore, I will give a
We give a comparison of the spectrum of Yang-Mills theory in $D=3+1$, recently derived with a strong coupling expansion, with lattice data. We verify excellent agreement also for 2$^{++}$ glueball. A deep analogy with the $D=2+1$ case is obtained and
I briefly review results obtained within the variational Hamiltonian approach to Yang-Mills theory in Coulomb gauge and confront them with recent lattice data. The variational approach is extended to non-Gaussian wave functionals including three- and