ﻻ يوجد ملخص باللغة العربية
We analyze large sets of energy-release data created by stress-induced brittle fracture in a pure sapphire crystal at close to zero temperature where stochastic fluctuations are minimal. The waiting-time distribution follows that observed for fracture in rock and for earthquakes. Despite strong time correlations of the events and the presence of large-event precursors, simple prediction algorithms only succeed in a very weak probabilistic sense. We also discuss prospects for further cryogenic experiments reaching close to single-bond sensitivity and able to investigate the existence of a transition-stress regime.
Crack initiation emerges due to a combination of elasticity, plasticity, and disorder, and it is heavily dependent on the materials microstructural details. In this paper, we investigate brittle metals with coarse-grained, microstructural disorder th
In this paper, five different approaches for reduced-order modeling of brittle fracture in geomaterials, specifically concrete, are presented and compared. Four of the five methods rely on machine learning (ML) algorithms to approximate important asp
Crack nucleation is a ubiquitous phenomena during materials failure, because stress focuses on crack tips. It is known that exceptions to this general rule arise in the limit of strong disorder or vanishing mechanical stability, where stress distribu
The orthorhombic boride crystal family XYB$_{14}$, where X and Y are metal atoms, plays a critical role in a unique class of superhard compounds, yet there have been no studies aimed at understanding the origin of the mechanical strength of this comp
A new quantum action-based theory, Dynamic Quantized Fracture Mechanics (DQFM), is presented that modifies continuum-based dynamic fracture mechanics. The crack propagation is assumed as quantized in both space and time. The static limit case corresp