ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of tetrahedral and octahedral-like sites in amorphous phase change materials

149   0   0.0 ( 0 )
 نشر من قبل Marco Bernasconi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chalcogenide alloys are materials of interest for optical recording and non-volatile memories. We perform ab-initio molecular dynamics simulations aiming at shading light onto the structure of amorphous Ge2Sb2Te5 (GST), the prototypical material in this class. First principles simulations show that amorphous GST obtained by quenching from the liquid phase displays two types of short range order. One third of Ge atoms are in a tetrahedral environment while the remaining Ge, Sb and Te atoms display a defective octahedral environment, reminiscent of cubic crystalline GST.



قيم البحث

اقرأ أيضاً

Phase diagrams are an invaluable tool for material synthesis and provide information on the phases of the material at any given thermodynamic condition. Conventional phase diagram generation involves experimentation to provide an initial estimate of thermodynamically accessible phases, followed by use of phenomenological models to interpolate between the available experimental data points and extrapolate to inaccessible regions. Such an approach, combined with first-principles calculations and data-mining techniques, has led to exhaustive thermodynamic databases albeit at distinct thermodynamic equilibria. In contrast, materials during their synthesis, operation, or processing, may not reach their thermodynamic equilibrium state but, instead, remain trapped in a local free energy minimum, that may exhibit desirable properties. Mapping these metastable phases and their thermodynamic behavior is highly desirable but currently lacking. Here, we introduce an automated workflow that integrates first principles physics and atomistic simulations with machine learning (ML), and high-performance computing to allow rapid exploration of the metastable phases of a given elemental composition. Using a representative material, carbon, with a vast number of metastable phases without parent in equilibrium, we demonstrate automatic mapping of hundreds of metastable states ranging from near equilibrium to those far-from-equilibrium. Moreover, we incorporate the free energy calculations into a neural-network-based learning of the equations of state that allows for construction of metastable phase diagrams. High temperature high pressure experiments using a diamond anvil cell on graphite sample coupled with high-resolution transmission electron microscopy are used to validate our metastable phase predictions. Our introduced approach is general and broadly applicable to single and multi-component systems.
We demonstrate here a controllable variation in the Casimir force. Changes in the force of up to 20% at separations of ~100 nm between Au and AgInSbTe (AIST) surfaces were achieved upon crystallization of an amorphous sample of AIST. This material is well known for its structural transformation, which produces a significant change in the optical properties and is exploited in optical data storage systems. The finding paves the way to the control of forces in nanosystems, such as micro- or nanoswitches by stimulating the phase change transition via localized heat sources.
139 - Gabriele C. Sosso 2012
GeTe is a prototypical phase change material of high interest for applications in optical and electronic non-volatile memories. We present an interatomic potential for the bulk phases of GeTe, which is created using a neural network (NN) representati on of the potential-energy surface obtained from reference calculations based on density functional theory. It is demonstrated that the NN potential provides a close to ab initio quality description of a number of properties of liquid, crystalline and amorphous GeTe. The availability of a reliable classical potential allows addressing a number of issues of interest for the technological applications of phase change materials, which are presently beyond the capability of first principles molecular dynamics simulations.
Yield stress fluids display complex dynamics, in particular when driven into the transient regime between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we implement mesocale elasto-plastic descriptions t o analyze such transient dynamics in athermal systems. Both our mean-field and space-dependent approaches consistently reproduce the typical experimental strain rate responses to different applied steps in stress. Moreover, they allow us to understand basic processes involved in the strain rate slowing down (creep) and the strain rate acceleration (fluidization) phases. The fluidization time increases in a power-law fashion as the applied external stress approaches a static yield stress. This stress value is related to the stress over-shoot in shear start-up experiments, and it is known to depend on sample preparation and age. By calculating correlations of the accumulated plasticity in the spatially resolved model, we reveal different modes of cooperative motion during the creep dynamics.
We report on density-functional-based tight-binding (DFTB) simulations of a series of amorphous arsenic sulfide models. In addition to the charged coordination defects previously proposed to exist in chalcogenide glasses, a novel defect pair, [As4]-- [S3]+, consisting of a four-fold coordinated arsenic site in a seesaw configuration and a three-fold coordinated sulfur site in a planar trigonal configuration, was found in several models. The valence-alternation pairs S3+-S1- are converted into [As4]--[S3]+ pairs under HOMO-to-LUMO electronic excitation. This structural transformation is accompanied by a decrease in the size of the HOMO-LUMO band gap, which suggests that such transformations could contribute to photo-darkening in these materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا