ﻻ يوجد ملخص باللغة العربية
Damped Lyman-alpha systems (DLAs) are useful probes of star formation and galaxy formation at high redshift. We study the physical properties of DLAs and their relationship to Lyman-break galaxies using cosmological hydrodynamic simulations based on the concordance Lambda cold dark matter model. Fundamental statistics such as global neutral hydrogen (HI) mass density, HI column density distribution function, DLA rate-of-incidence and mean halo mass of DLAs are reproduced reasonably well by the simulations, but with some deviations that need to be understood better in the future. We discuss the feedback effects by supernovae and galactic winds on the DLA distribution. We also compute the [C_II] emission from neutral gas in high-z galaxies, and make predictions for the future observations by ALMA and SPICA. Agreement and disagreement between simulations and observations are discussed, as well as the future directions of our DLA research.
We present the first search for galaxy counterparts of intervening high-z (2<z< 3.6) sub-DLAs and DLAs towards GRBs. Our final sample comprises of five intervening sub-DLAs and DLAs in four GRB fields. To identify candidate galaxy counterparts of the
Quasar absorbers provide a powerful observational tool with which to probe both galaxies and the intergalactic medium up to high redshift. We present a study of the evolution of the column density distribution, f(N,z), and total neutral hydrogen mass
We have examined some basic properties of damped Ly$alpha$ systems(DLAs) by semi-analytic model. We assume that DLA hosts are disk galaxies whose mass function is generated by Press-Schechter formulism at redshift 3. Star formation and chemical evolu
We present the largest, publicly available, sample of Damped Lyman-$alpha$ systems (DLAs) along Gamma-ray Bursts (GRB) line of sights in order to investigate the environmental properties of long GRBs in the $z=1.8-6$ redshift range. Compared with the
We use simple models of the spatial structure of the quasar broad line region (BLR) to investigate the properties of so-called ghostly damped Lyman-{alpha} (DLA) systems detected in SDSS data. These absorbers are characterized by the presence of stro