ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the Secrets of Metallicity and Massive Star Formation Using DLAs along Gamma-ray Bursts

110   0   0.0 ( 0 )
 نشر من قبل Antonino Cucchiara
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the largest, publicly available, sample of Damped Lyman-$alpha$ systems (DLAs) along Gamma-ray Bursts (GRB) line of sights in order to investigate the environmental properties of long GRBs in the $z=1.8-6$ redshift range. Compared with the most recent quasar DLAs sample (QSO-DLA), our analysis shows that GRB-DLAs probe a more metal enriched environment at $zgtrsim3$, up to $[X/H]sim-0.5$. In the $z=2-3$ redshift range, despite the large number of lower limits, there are hints that the two populations may be more similar (only at 90% significance level). Also at hiz, the GRB-DLA average metallicity seems to decline at a shallower rate than the QSO-DLAs: GRB-DLA hosts may be polluted with metals at least as far as $sim 2$kpc from the GRB explosion site, probably due to previous star-formation episodes and/or supernovae explosions. This shallow metallicity trend, extended now up to $zsim5$, confirms previous results that GRB hosts are star-forming and have, on average, higher metallicity than the general QSO-DLA population. Finally, our metallicity measurements are broadly consistent with the hypothesis of two channels of GRB progenitors, one of which is mildly affected by a metallicity bias. The metallicity evolution of modeled GRB hosts agrees reasonably well with our data up to intermediate redshift, while more data are needed to constrain the models at $zgtrsim 4$.



قيم البحث

اقرأ أيضاً

A majority of the $gamma$-ray emission from star-forming galaxies is generated by the interaction of high-energy cosmic rays with the interstellar gas and radiation fields. Star-forming galaxies are expected to contribute to both the extragalactic $g amma$-ray background and the IceCube astrophysical neutrino flux. Using roughly 10,years of $gamma$-ray data taken by the {it Fermi} Large Area Telescope, in this study we constrain the $gamma$-ray properties of star-forming galaxies. We report the detection of 11 bona-fide $gamma$-ray emitting galaxies and 2 candidates. Moreover, we show that the cumulative $gamma$-ray emission of below-threshold galaxies is also significantly detected at $sim$5,$sigma$ confidence. The $gamma$-ray luminosity of resolved and unresolved galaxies is found to correlate with the total (8-1000,$mu$m) infrared luminosity as previously determined. Above 1,GeV, the spectral energy distribution of resolved and unresolved galaxies is found to be compatible with a power law with a photon index of $approx2.2-2.3$. Finally, we find that star-forming galaxies account for roughly 5,% and 3,% of the extragalactic $gamma$-ray background and the IceCube neutrino flux, respectively.
142 - C. Pfrommer 2017
Star forming galaxies emit GeV- and TeV-gamma rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving mesh code Arepo to perform magneto -hydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky-Way like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is calorimetrically lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.
In this paper, we study the luminosity function and formation rate of short gamma-ray bursts (sGRBs). Firstly, we derive the $E_p-L_p$ correlation using 16 sGRBs with redshift measurements and determine the pseudo redshifts of 284 Fermi sGRBs. Then, we use the Lynden-Bell c$^-$ method to study the luminosity function and formation rate of sGRBs without any assumptions. A strong evolution of luminosity $L(z)propto (1+z)^{4.47}$ is found. After removing this evolution, the luminosity function is $ Psi (L) propto L_0 ^ {- 0.29 pm 0.01} $ for dim sGRBs and $ psi (L) propto L_0 ^ {- 1.07 pm 0.01} $ for bright sGRBs, with the break point $8.26 times 10^{50} $ erg s$^{-1}$. We also find that the formation rate decreases rapidly at $z<1.0$, which is different with previous works. The local formation rate of sGRBs is 7.53 events Gpc$^{-3}$ yr$^{-1}$. Considering the beaming effect, the local formation rate of sGRBs including off-axis sGRBs is $ 203.31^{+1152.09}_{-135.54} $ events Gpc$^{-3}$ yr$^{-1}$. We also estimate that the event rate of sGRBs detected by the advanced LIGO and Virgo is $0.85^{+4.82}_{-0.56} $ events yr$^{-1}$ for NS-NS binary.
Gamma Ray Bursts are detectable in the gamma-ray band if their jets are oriented towards the observer. However, for each GRB with a typical theta_jet, there should be ~2/theta_jet^2 bursts whose emission cone is oriented elsewhere in space. These off -axis bursts can be eventually detected when, due to the deceleration of their relativistic jets, the beaming angle becomes comparable to the viewing angle. Orphan Afterglows (OA) should outnumber the current population of bursts detected in the gamma-ray band even if they have not been conclusively observed so far at any frequency. We compute the expected flux of the population of orphan afterglows in the mm, optical and X-ray bands through a population synthesis code of GRBs and the standard afterglow emission model. We estimate the detection rate of OA by on-going and forthcoming surveys. The average duration of OA as transients above a given limiting flux is derived and described with analytical expressions: in general OA should appear as daily transients in optical surveys and as monthly/yearly transients in the mm/radio band. We find that ~ 2 OA yr^-1 could already be detected by Gaia and up to 20 OA yr^-1 could be observed by the ZTF survey. A larger number of 50 OA yr^-1 should be detected by LSST in the optical band. For the X-ray band, ~ 26 OA yr^-1 could be detected by the eROSITA. For the large population of OA detectable by LSST, the X-ray and optical follow up of the light curve (for the brightest cases) and/or the extensive follow up of their emission in the mm and radio band could be the key to disentangle their GRB nature from other extragalactic transients of comparable flux density.
380 - Sami Dib 2011
We explore how the star formation efficiency in a protocluster clump is regulated by metallicity dependent stellar winds from the newly formed massive OB stars (Mstar >5 Msol). The model describes the co-evolution of the mass function of gravitationa lly bound cores and of the IMF in a protocluster clump. Dense cores are generated uniformly in time at different locations in the clump, and contract over lifetimes that are a few times their free fall times. The cores collapse to form stars that power strong stellar winds whose cumulative kinetic energy evacuates the gas from the clump and quenches further core and star formation. This sets the final star formation efficiency, SFEf. Models are run with various metallicities in the range Z/Zsol=[0.1,2]. We find that the SFEf decreases strongly with increasing metallicity.The SFEf-metallicity relation is well described by a decaying exponential whose exact parameters depend weakly on the value of the core formation efficiency. We find that there is almost no dependence of the SFEf-metallicity relation on the clump mass. This is due to the fact that an increase (decrease) in the clump mass leads to an increase (decrease) in the feedback from OB stars which is opposed by an increase (decrease) in the gravitational potential of the clump. The clump mass-cluster mass relations we find for all of the different metallicity cases imply a negligible difference between the exponent of the mass function of the protocluster clumps and that of the young clusters mass function. By normalizing the SFEs to their value for the solar metallicity case, we compare our results to SFE-metallicity relations derived on galactic scales and find a good agreement. As a by-product of this study, we also provide ready-to-use prescriptions for the power of stellar winds of main sequence OB stars in the mass range [5,80] Msol in the metallicity range we have considered
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا