ﻻ يوجد ملخص باللغة العربية
We consider the non-commutative inflation model of [3] in which it is the unconventional dispersion relation for regular radiation which drives the accelerated expansion of space. In this model, we study the evolution of linear cosmological perturbations through the transition between the phase of accelerated expansion and the regular radiation-dominated phase of Standard Cosmology, the transition which is analogous to the reheating period in scalar field-driven models of inflation. If matter consists of only a single non-commutative radiation fluid, then the curvature perturbations are constant on super-Hubble scales. On the other hand, if we include additional matter fields which oscillate during the transition period, e.g. scalar moduli fields, then there can be parametric amplification of the amplitude of the curvature perturbations. We demonstrate this explicitly by numerically solving the full system of perturbation equations in the case where matter consists of both the non-commutative radiation field and a light scalar field which undergoes oscillations. Our model is an example where the parametric resonance of the curvature fluctuations is driven by the oscillations not of the inflaton field, but of the entropy mode
We compute the spectrum of cosmological perturbations in a scenario in which inflation is driven by radiation in a non-commutative space-time. In this scenario, the non-commutativity of space and time leads to a modified dispersion relation for radia
We study the quantum mechanical evolution of the tensor perturbations during inflation with non-linear tensor interactions. We first obtain the Lindblad terms generated by non-linear interactions by tracing out unobservable sub-horizon modes. Then we
Extending our previous work on the robustness of inflation to perturbations in the scalar field, we investigate the effects of perturbations in the transverse traceless part of the extrinsic curvature on the evolution of an inhomogeneous inflaton fie
We investigate the scalar metric perturbations about a de Sitter brane universe in a 5-dimensional anti de Sitter bulk. We compare the master-variable formalism, describing metric perturbations in a 5-dimensional longitudinal gauge, with results in a
We study cosmological perturbations in two-field inflation, allowing for non-standard kinetic terms. We calculate analytically the spectra of curvature and isocurvature modes at Hubble crossing, up to first order in the slow-roll parameters. We also