ترغب بنشر مسار تعليمي؟ اضغط هنا

Robustness of Inflation to Large Tensor Perturbations

75   0   0.0 ( 0 )
 نشر من قبل Katy Clough Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extending our previous work on the robustness of inflation to perturbations in the scalar field, we investigate the effects of perturbations in the transverse traceless part of the extrinsic curvature on the evolution of an inhomogeneous inflaton field. Focusing on small field models, we show that these additional metric inhomogeneities initially reduce the total number of e-folds as the amplitude increases, but that the reduction saturates and even reverses above a certain amplitude. We present an argument that this is due to the presence of a large initial Hubble friction when metric perturbations are large.



قيم البحث

اقرأ أيضاً

176 - Tianjun Li , Zheng Sun , Chi Tian 2014
We systematically study the renormalizable three-term polynomial inflation in the supersymmetric and non-supersymmetric models. The supersymmetric inflaton potentials can be realized in supergravity theory, and only have two independent parameters. W e show that the general renormalizable supergravity model is equivalent to one kind of our supersymmetric models. We find that the spectral index and tensor-to-scalar ratio can be consistent with the Planck and BICEP2 results, but the running of spectral index is always out of the $2sigma$ range. If we do not consider the BICEP2 experiment, these inflationary models can be highly consistent with the Planck observations and saturate its upper bound on the tensor-to-scalar ratio ($r le 0.11$). Thus, our models can be tested at the future Planck and QUBIC experiments.
We study the quantum mechanical evolution of the tensor perturbations during inflation with non-linear tensor interactions. We first obtain the Lindblad terms generated by non-linear interactions by tracing out unobservable sub-horizon modes. Then we calculate explicitly the reduced density matrix for the super-horizon modes, and show that the probability of maintaining the unitarity of the squeezed state decreases in time. The decreased probability is transferred to other elements of the reduced density matrix including off-diagonal ones, so the evolution of the reduced density matrix describes the quantum-to-classical transition of the tensor perturbations. This is different from the classicality accomplished by the squeezed state, the suppression of the non-commutative effect, which is originated from the quadratic, linear interaction, and also maintains the unitarity. The quantum-to-classical transition occurs within 5 - 10 e-folds, faster than the curvature perturbation.
We study the Wigner function for the inflationary tensor perturbation defined in the real phase space. We compute explicitly the Wigner function including the contributions from the cubic self-interaction Hamiltonian of tensor perturbations. Then we argue that it is no longer an appropriate description for the probability distribution in the sense that quantum nature allows negativity around vanishing phase variables. This comes from the non-Gaussian wavefunction in the mixed state as a result of the non-linear interaction between super- and sub-horizon modes. We also show that this is related to the explicit infrared divergence in the Wigner function, in contrast to the trace of the density matrix.
We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the $T$, $E$, and $B$ modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with a simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.
We investigate the scalar metric perturbations about a de Sitter brane universe in a 5-dimensional anti de Sitter bulk. We compare the master-variable formalism, describing metric perturbations in a 5-dimensional longitudinal gauge, with results in a Gaussian normal gauge. For a vacuum brane (with constant brane tension) there is a continuum of normalizable Kaluza-Klein modes, with m>3H/2, which remain in the vacuum state. A light radion mode, with m=sqrt{2}H, satisfies the boundary conditions for two branes but is not normalizable in the single-brane case. When matter is introduced (as a test field) on the brane, this mode, together with the zero-mode and an infinite ladder of discrete tachyonic modes, become normalizable. However, the boundary condition requires the self-consistent 4-dimensional evolution of scalar field perturbations on the brane and the dangerous growing modes are not excited. These normalizable discrete modes introduce corrections at first-order to the scalar field perturbations computed in a slow-roll expansion. On super-Hubble scales, the correction is smaller than slow-roll corrections to the de Sitter background. However on small scales the corrections can become significant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا