ﻻ يوجد ملخص باللغة العربية
In this work the authors implemented a resonator based upon microstrip cavities that permits the generation of microwaves with arbitrary polarization. Design, simulation, and implementation of the resonators were performed using standard printed circuit boards. The electric field distribution was mapped using a scanning probe cavity perturbation technique. Electron spin resonance using a standard marker was carried out in order to verify the polarization control from linear to circular.
Based on interrelation between the thermodynamic and electromechanical phenomena in superfluid helium, the explanation of experimentally found features of microwave interaction in the frequency range of 40-200 GHz is given. Due to fast roton-roton an
We investigate the magnetic hysteresis of a superconducting microstrip resonator with a high edge barrier. We measure the magnetic hysteresis while either sweeping a magnetic field or tuning the edge barrier by high microwave current. We show that th
In this article we discuss the design and implementation of a novel microstrip resonator which allows for the absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstri
The electron transport of different conical valleys is investigated in graphene with extended line-defects. Intriguingly, the electron with a definite incident angle can be completely modulated into one conical valley by a resonator which consists of
We analyze coherent transport of photons, which propagate in a one-dimensional coupled-resonator waveguide (CRW) and are scattered by a controllable two-level system located inside the CRW. Our approach, which uses discrete coordinates, unifies low a