ﻻ يوجد ملخص باللغة العربية
We investigate the magnetic hysteresis of a superconducting microstrip resonator with a high edge barrier. We measure the magnetic hysteresis while either sweeping a magnetic field or tuning the edge barrier by high microwave current. We show that the magnetic hysteresis of such a device is qualitatively different from that of one without an edge barrier and can be understood based on the generalized critical-state model. In particular, we propose and demonstrate a simple and intuitive method that relies on a plot of the quality factor versus the resonance frequency for revealing the physical processes behind those hysteretic behaviors. Based on this, we find that the interplay between the Meisser current and vortex pinning is essential for understanding the magnetic hysteresis of such a device.
We fabricated superconducting coplanar waveguide resonator with leads for dc bias, which enables the ac conductivity measurement under dc bias. The current and the magnetic field dependences of resonance properties were measured, and hysteretic behav
We describe an experimental protocol to characterize magnetic field dependent microwave losses in superconducting niobium microstrip resonators. Our approach provides a unified view that covers two well-known magnetic field dependent loss mechanisms:
We study self-sustained oscillations (SO) in a Nb superconducting stripline resonators (SSR) integrated with a DC superconducting quantum interface devices (SQUID). We find that both the power threshold where these oscillations start and the oscillat
We study superconducting stripline resonator (SSR) made of Niobium, which is integrated with a superconducting interference device (SQUID). The large nonlinear inductance of the SQUID gives rise to strong Kerr nonlinearity in the response of the SSR,
We utilize a superconducting stripline resonator containing a dc-SQUID as a strong intermodulation amplifier exhibiting a signal gain of 25 dB and a phase modulation of 30 dB. Studying the system response in the time domain near the intermodulation a