ﻻ يوجد ملخص باللغة العربية
In these notes we discuss the self-reducibility property of the Weil representation. We explain how to use this property to obtain sharp estimates of certain higher-dimensional exponential sums which originate from the theory of quantum chaos. As a result, we obtain the Hecke quantum unique ergodicity theorem for generic linear symplectomorphism $A$ of the torus $T^{2N}=R^{2N}/Z^{2N}.
The Cauchy problem is studied for the self-adjoint and non-self-adjoint Schroedinger equations. We first prove the existence and uniqueness of solutions in the weighted Sobolev spaces. Secondly we prove that if potentials are depending continuously a
The Feynman checkerboard problem is an interesting path integral approach to the Dirac equation in `1+1 dimensions. I compare two approaches reported in the literature and show how they may be reconciled. Some physical insights may be gleaned from this approach.
This is an introduction to the geometry of compact Riemann surfaces, largely following the books Farkas-Kra, Fay, Mumford Tata lectures. 1) Defining Riemann surfaces with atlases of charts, and as locus of solutions of algebraic equations. 2) Space o
These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mech
The coding theorem for the entanglement-assisted communication via infinite-dimensional quantum channel with linear constraint is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and the $chi$