ﻻ يوجد ملخص باللغة العربية
This is an introduction to the geometry of compact Riemann surfaces, largely following the books Farkas-Kra, Fay, Mumford Tata lectures. 1) Defining Riemann surfaces with atlases of charts, and as locus of solutions of algebraic equations. 2) Space of meromorphic functions and forms, we classify them with the Newton polygon. 3) Abel map, the Jacobian and Theta functions. 4) The Riemann--Roch theorem that computes the dimension of spaces of functions and forms with given orders of poles and zeros. 5) The moduli space of Riemann surfaces, with its combinatorial representation as Strebel graphs, and also with the uniformization theorem that maps Riemann surfaces to hyperbolic surfaces. 6) An application of Riemann surfaces to integrable systems, more precisely finding sections of an eigenvector bundle over a Riemann surface, which is known as the algebraic reconstruction method in integrable systems, and we mention how it is related to Baker-Akhiezer functions and Tau functions.
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obta
The Feynman checkerboard problem is an interesting path integral approach to the Dirac equation in `1+1 dimensions. I compare two approaches reported in the literature and show how they may be reconciled. Some physical insights may be gleaned from this approach.
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challe
In this paper using a Clifford bundle formalism we examine (a): the strong conditions for existence of conservation laws involving only the energy-momentum and angular momentum of the matter fields on a general Riemann-Cartan spacetime and also in th
We present analytical implementation of conformal field theory on a compact Riemann surface. We consider statistical fields constructed from background charge modifications of the Gaussian free field and derive Ward identities which represent the Lie