ﻻ يوجد ملخص باللغة العربية
In recent years cosmic shear, the weak gravitational lensing effect by the large-scale structure of the Universe, has proven to be one of the observational pillars on which the cosmological concordance model is founded. Several cosmic shear statistics have been developed in order to analyze data from surveys. For the covariances of the prevalent second-order measures we present simple and handy formulae, valid under the assumptions of Gaussian density fluctuations and a simple survey geometry. We also formulate these results in the context of shear tomography, i.e. the inclusion of redshift information, and generalize them to arbitrary data field geometries. We define estimators for the E- and B-mode projected power spectra and show them to be unbiased in the case of Gaussianity and a simple survey geometry. From the covariance of these estimators we demonstrate how to derive covariances of arbitrary combinations of second-order cosmic shear measures. We then recalculate the power spectrum covariance for general survey geometries and examine the bias thereby introduced on the estimators for exemplary configurations. Our results for the covariances are considerably simpler than and analytically shown to be equivalent to the real-space approach presented in the first paper of this series. We find good agreement with other numerical evaluations and confirm the general properties of the covariance matrices. The studies of the specific survey configurations suggest that our simplified covariances may be employed for realistic survey geometries to good approximation.
We introduce an optimized data vector of cosmic shear measures (N). This data vector has high information content, is not sensitive against B-mode contamination and only shows small correlation between data points of different angular scales. We show
We present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), doubling the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses. Ad
We explore the stability of the variance and skewness of the cosmic gravitational convergence field, using two different approaches: first we simulate a whole MEGACAM survey (100 sq. degrees). The reconstructed mass map, obtained from a shear map, sh
We constrain cosmological parameters from a joint cosmic shear analysis of peak-counts and the two-point shear correlation functions, as measured from the Dark Energy Survey (DES-Y1). We find the structure growth parameter $S_8equiv sigma_8sqrt{Omega
Following the detection of a cosmic shear signal at the 30 scale using archival parallel data from the STIS CCD camera onboard HST in Haemmerle et al. (2002), we analyzed a larger data set obtained from an HST GO pure parallel program. Although this