ترغب بنشر مسار تعليمي؟ اضغط هنا

Correspondence Between DGP Brane Cosmology and 5D Ricci-flat Cosmology

541   0   0.0 ( 0 )
 نشر من قبل Yongli Ping
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the correspondence between the DGP brane cosmology and 5D Ricci-flat cosmology by letting their metrics equal each other. By this correspondence, a specific geometrical property of the arbitrary integral constant I in DGP metric is given and it is related to the curvature of 5D bulk. At the same time, the relation of arbitrary functions $mu$ and $ u$ in a class of Ricci-flat solutions is obtained from DGP brane metric.



قيم البحث

اقرأ أيضاً

We revisit spatially flat FLRW cosmology in light of recent advances in standard model relativistic fluid dynamics. Modern fluid dynamics requires the presence of curvature-matter terms in the energy-momentum tensor for consistency. These terms are l inear in the Ricci scalar and tensor, such that the corresponding cosmological model is referred to as ``Ricci cosmology. No cosmological constant is included, there are no inflaton fields, bulk viscosity is assumed to be zero and we only employ standard Einstein gravity. Analytic solutions to Ricci cosmology are discussed, and we find that it is possible to support an early-time inflationary universe using only well-known ingredients from the Standard Model of physics and geometric properties of space-time.
We derive a system of cosmological equations for a braneworld with induced curvature which is a junction between several bulk spaces. The permutation symmetry of the bulk spaces is not imposed, and the values of the fundamental constants, and even th e signatures of the extra dimension, may be different on different sides of the brane. We then consider the usual partial case of two asymmetric bulk spaces and derive an exact closed system of scalar equations on the brane. We apply this result to the cosmological evolution on such a brane and describe its various partial cases.
Flat Space Cosmology (FSC) spacetimes are exact solutions of 3D gravity theories. In this work, we study phase transition between FSC spacetimes and Hot Flat Spacetimes (HFS) in general minimal massive gravity and exotic general massive gravity. We s how that similar to topological massive gravity the tunneling occurs between two spacetimes by comparing their free energies. We also obtain the corrections to the Bekenstein-Hawking entropy, and its effect on the phase transition is studied.
114 - Supratik Pal 2008
We develop a technique to study relativistic perturbations in the generalised brane cosmological scenario, which is a generalisation of the multi-fluid cosmological perturbations to brane cosmology. The novelty of the technique lies in the inclusion of a radiative bulk which is responsible for bulk-brane energy exchange, and in turn, modifies the standard perturbative analysis to a great extent. The analysis involves a geometric fluid -- called the Weyl fluid -- whose nature and role have been studied extensively both for the empty bulk and the radiative bulk scenario. Subsequently, we find that this Weyl fluid can be a possible geometric candidate for dark matter in this generalised brane cosmological framework.
166 - Moncy V. John 2014
We find a Friedmann model with appropriate matter/energy density such that the solution of the Wheeler-DeWitt equation exactly corresponds to the classical evolution. The well-known problems in quantum cosmology disappear in the resulting coasting ev olution. The exact quantum-classical correspondence is demonstrated with the help of the de Broglie-Bohm and modified de Broglie-Bohm approaches to quantum mechanics. It is reassuring that such a solution leads to a robust model for the universe, which agrees well with cosmological expansion indicated by SNe Ia data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا