ﻻ يوجد ملخص باللغة العربية
We revisit spatially flat FLRW cosmology in light of recent advances in standard model relativistic fluid dynamics. Modern fluid dynamics requires the presence of curvature-matter terms in the energy-momentum tensor for consistency. These terms are linear in the Ricci scalar and tensor, such that the corresponding cosmological model is referred to as ``Ricci cosmology. No cosmological constant is included, there are no inflaton fields, bulk viscosity is assumed to be zero and we only employ standard Einstein gravity. Analytic solutions to Ricci cosmology are discussed, and we find that it is possible to support an early-time inflationary universe using only well-known ingredients from the Standard Model of physics and geometric properties of space-time.
Recently, a new cosmological framework, dubbed Ricci Cosmology, has been proposed. Such a framework has emerged from the study of relativistic dynamics of fluids out of equilibrium in a curved background and is characterised by the presence of deviat
We present a model of holographic dark energy in which the Infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the Infrared cutoff, and consequently the holographic d
We present a short review of possible applications of the Wheeler-De Witt equation to cosmological models based on the low-energy string effective action, and characterised by an initial regime of asymptotically flat, low energy, weak coupling evolut
Recently, Amendola et al. proposed a geometrical theory of gravity containing higher-order derivative terms. The authors introduced anticurvature scalar $(A)$, which is the trace of the inverse of the Ricci tensor ($A^{mu u} = R_{mu u}^{-1}$). In thi
Lectures by the author at the 1986 Cargese summer school modestly corrected and uploaded for greater accessibility. Some of the authors views on the quantum mechanics of cosmology have changed from those presented here but may still be of historical