ترغب بنشر مسار تعليمي؟ اضغط هنا

Screening effects on field emission from arrays of (5,5) carbon nanotubes: Quantum-mechanical simulation

172   0   0.0 ( 0 )
 نشر من قبل Guihua Chen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The simulation of field electron emission from arrays of micrometer-long open-ended (5, 5) carbon nanotubes is performed in the framework of quantum theory of many electrons. It is found that the applied external field is strongly screened when the spacing distance is shorter than the length of the carbon nanotubes. The optimal spacing distance is two to three times of the nanotube length, slightly depending on the applied external fields. The electric screening can be described by a factor that is a exponential function of the ratio of the spacing distance to the length of the carbon nanotubes. For a given length, the field enhancement factor decreases sharply as the screening factor larger than 0.05. The simulation implies that the thickness of the array should be larger than a value but it does not help the emission much by increasing the thickness a great deal.



قيم البحث

اقرأ أيضاً

We study the low temperature phase behavior of hydrogen within a bundle of carbon nanotubes. Because the carbon environment weakens the attraction between molecules within the same interstitial channel (IC), the ground state of the one-dimensional (1 D) system is an uncondensed gas. When the screened attractive interaction between molecules in adjacent ICs is taken into account, the hydrogen ground state is a quasi-1D liquid. The critical temperature of this system is estimated.
We present a detailed study of the vibrational properties of Single Wall Carbon Nanotubes (SWNTs). The phonon dispersions of SWNTs are strongly shaped by the effects of electron-phonon coupling. We analyze the separate contributions of curvature and confinement. Confinement plays a major role in modifying SWNT phonons and is often more relevant than curvature. Due to their one-dimensional character, metallic tubes are expected to undergo Peierls distortions (PD) at T=0K. At finite temperature, PD are no longer present, but phonons with atomic displacements similar to those of the PD are affected by strong Kohn anomalies (KA). We investigate by Density Functional Theory (DFT) KA and PD in metallic SWNTs with diameters up to 3 nm, in the electronic temperature range from 4K to 3000 K. We then derive a set of simple formulas accounting for all the DFT results. Finally, we prove that the static approach, commonly used for the evaluation of phonon frequencies in solids, fails because of the SWNTs reduced dimensionality. The correct description of KA in metallic SWNTs can be obtained only by using a dynamical approach, beyond the adiabatic Born-Oppenheimer approximation, by taking into account non-adiabatic contributions. Dynamic effects induce significant changes in the occurrence and shape of Kohn anomalies. We show that the SWNT Raman G peak can only be interpreted considering the combined dynamic, curvature and confinement effects. We assign the G+ and G- peaks of metallic SWNTs to TO (circumferential) and LO (axial) modes, respectively, the opposite of semiconducting SWNTs.
65 - N.Murata , J.Haruyama , Y.Ueda 2007
We report Meissner effect for type-II superconductors with a maximum Tc of 19 K, which is the highest value among those in new-carbon related superconductors, found in the honeycomb arrays of multi-walled CNTs (MWNTs). Drastic reduction of ferromagne tic catalyst and efficient growth of MWNTs by deoxidization of catalyst make the finding possible. The weak magnetic anisotropy, superconductive coherence length (- 7 nm), and disappearance of the Meissner effect after dissolving array structure indicate that the graphite structure of an MWNT and those intertube coupling in the honeycomb array are dominant factors for the mechanism.
The field electron emission from the single-walled carbon nanotubes with their open ends terminated by -BH, -NH, and -O has been simulated. The apex-vacuum barrier and the emission current have been calculated. It has been found that -BH and -NH supp ress the apex-vacuum barrier significantly and lead to higher emission current in contrast to the -O terminated structure in the same applied field. The calculated binding energy implies that the carbon nanotubes terminated with -BH and -NH are more stable than those saturated by oxygen atoms or by hydrogen atoms.
We perform ab initio calculations of charged graphene and single-wall carbon nanotubes (CNTs). A wealth of electromechanical behaviors is obtained: (1) Both nanotubes and graphene expand upon electron injection. (2) Upon hole injection, metallic nano tubes and graphene display a non-monotonic behavior: Upon increasing hole densities, the lattice constant initially contracts, reaches a minimum, and then starts to expand. The hole densities at minimum lattice constants are 0.3 |e|/atom for graphene and between 0.1 and 0.3 |e|/atom for the metallic nanotubes studied. (3)Semiconducting CNTs with small diameters (d <~ 20 A) always expand upon hole injection; (4) Semiconducting CNTs with large diameters (d >~ 20 A) display a behavior intermediate between those of metallic and large-gap CNTs. (5) The strain versus extra charge displays a linear plus power-law behavior, with characteristic exponents for graphene, metallic, and semiconducting CNTs. All these features are physically understood within a simple tight-binding total-energy model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا