ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of oxygen vacancy on the electronic structure of HfO$_2$ film

309   0   0.0 ( 0 )
 نشر من قبل Deok-Yong Cho
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the unoccupied part of the electronic structure of the oxygen-deficient hafnium oxide (HfO$_{sim1.8}$) using soft x-ray absorption spectroscopy at O $K$ and Hf $N_3$ edges. Band-tail states beneath the unoccupied Hf 5$d$ band are observed in the O $K$-edge spectra; combined with ultraviolet photoemission spectrum, this indicates the non-negligible occupation of Hf 5$d$ state. However, Hf $N_3$-edge magnetic circular dichroism spectrum reveals the absence of a long-range ferromagnetic spin order in the oxide. Thus the small amount of $d$ electron gained by the vacancy formation does not show inter-site correlation, contrary to a recent report [M. Venkatesan {it et al.}, Nature {bf 430}, 630 (2004)].



قيم البحث

اقرأ أيضاً

The observation of metallic interface between band insulators LaAlO$_3$ and SrTiO$_3$ has led to massive efforts to understand the origin of the phenomenon as well as to search for other systems hosting such two dimensional electron gases (2-DEG). Ho wever, the understanding of the origin of the 2-DEG is very often hindered as several possible mechanisms such as polar catastrophe, cationic intermixing and oxygen vacancy (OV) etc. can be operative simultaneously. The presence of a heavy element makes KTaO$_3$ (KTO) based 2-DEG a potential platform to investigate spin orbit coupling driven novel electronic and magnetic phenomena. In this work, we investigate the sole effect of the OV, which makes KTO metallic. Our detailed textit{ab initio} calculations not only find partially filled conduction bands in the presence of an OV but also predict a highly localized mid-gap state due to the linear clustering of OVs around Ta. Photoluminescence measurements indeed reveal the existence of such mid-gap state and O $K$-edge X-ray absorption spectroscopy finds electron doping in Ta $t_{2g}^*$ antibonding states. This present work suggests that one should be cautious about the possible presence of OVs within KTO substrate in interpreting metallic behavior of KTO based 2-DEG.
In oxide epitaxy, the growth temperature and background oxygen partial pressure are considered as the most critical factors that control the phase stability of an oxide thin film. Here, we report an unusual case wherein diffusion of oxygen vacancies from the substrate overpowers the growth temperature and oxygen partial pressure to deterministically influence the phase stability of $Bi_{2}WO_{6}$ thin film grown by the pulsed laser deposition technique. We show that when grown on an oxygen-deficient $SrTiO_{3}$ substrate, the $Bi_{2}WO_{6}$ film exhibits a mixture of (001) and (100)/(010)-oriented domains alongside (001)-oriented impurity $WO_{3}$ phases. The (100)/(010)-oriented $Bi_{2}WO_{6}$ phases form a self-organized 3D nanopillar-structure, yielding a very rough film surface morphology. Oxygen annealing of the substrate or using a few monolayer-thick $SrRuO_{3}$ as the blocking layer for oxygen vacancy diffusion enables growing high-quality single-crystalline $Bi_{2}WO_{6}$ (001) thin film exhibiting an atomically smooth film surface with step-terrace structure. We propose that the large oxide-ion conductivity of $Bi_{2}WO_{6}$ facilitates diffusion of oxygen vacancies from the substrate during the film growth, accelerating the evaporation of volatile Bismuth (Bi), which hinders the epitaxial growth. Our work provides a general guideline for high-quality thin film growth of Aurivillius compounds and other oxide-ion conductors containing volatile elements.
The search for new wide band gap materials is intensifying to satisfy the need for more advanced and energy efficient power electronic devices. Ga$_2$O$_3$ has emerged as an alternative to SiC and GaN, sparking a renewed interest in its fundamental p roperties beyond the main $beta$-phase. Here, three polymorphs of Ga$_2$O$_3$, $alpha$, $beta$ and $varepsilon$, are investigated using X-ray diffraction, X-ray photoelectron and absorption spectroscopy, and ab initio theoretical approaches to gain insights into their structure - electronic structure relationships. Valence and conduction electronic structure as well as semi-core and core states are probed, providing a complete picture of the influence of local coordination environments on the electronic structure. State-of-the-art electronic structure theory, including all-electron density functional theory and many-body perturbation theory, provide detailed understanding of the spectroscopic results. The calculated spectra provide very accurate descriptions of all experimental spectra and additionally illuminate the origin of observed spectral features. This work provides a strong basis for the exploration of the Ga$_2$O$_3$ polymorphs as materials at the heart of future electronic device generations.
We present a detailed ab initio study of the electronic structure and magnetic order of an Fe monolayer on the Ir(001) surface covered by adsorbed oxygen and hydrogen. The results are compared to the clean Fe/Ir(001) system, where recent intensive st udies indicated a strong tendency towards an antiferromagnetic order and complex magnetic structures. The adsorption of an oxygen overlayer significantly increases interlayer distance between the Fe layer and the Ir substrate, while the effect of hydrogen is much weaker. We show that the adsorption of oxygen (and also of hydrogen) leads to a p(2$times $1) antiferromagnetic order of the Fe moments, which is also supported by an investigation based on a disordered local moment state. Simulated scanning tunneling images using the simple Tersoff-Hamann model hint that the proposed p(2$times $1) antiferromagnetic order could be detected even by non-magnetic tips.
We have synthesized highly oxygen deficient HfO$_{2-x}$ thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10^{21} charge carr iers per cm3. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا