ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the spin state of Co in LaCoO3 at room temperature

139   0   0.0 ( 0 )
 نشر من قبل Dr. Kalobaran Maiti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the spin state of LaCoO3 using state-of-the-art photoemission spectroscopy and ab initio band structure calculations. The GGA+U calculations provide a good description of the ground state for the experimentally estimated value of electron correlation strength, U. In addition to the correlation effect, spin-orbit interaction is observed to play a significant role in the case of intermediate spin and high spin configurations. The comparison of the calculated Co 3d and O 2p partial density of states with the experimental valence band spectra indicates that at room temperature, Co has dominant intermediate spin state configuration and that the high spin configuration may not be significant at this temperature. The lineshape of the La 5p and O 2s core level spectra could be reproduced well within these ab initio calculations.



قيم البحث

اقرأ أيضاً

119 - D. Fuchs , L. Dieterle , E. Arac 2008
Epitaxially strained LaCoO3 (LCO) thin films were grown with different film thickness, t, on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates. After initial pseudomorphic growth the films start to relieve their strain partly by the for mation of periodic nano-twins with twin planes predominantly along the <100> direction. Nano-twinning occurs already at the initial stage of growth, albeit in a more moderate way. Pseudomorphic grains, on the other hand, still grow up to a thickness of at least several tenths of nanometers. The twinning is attributed to the symmetry lowering of the epitaxially strained pseudo-tetragonal structure towards the relaxed rhombohedral structure of bulk LCO. However, the unit-cell volume of the pseudo-tetragonal structure is found to be nearly constant over a very large range of t. Only films with t > 130 nm show a significant relaxation of the lattice parameters towards values comparable to those of bulk LCO.
Spin-charge conversion via spin-orbit interaction is one of the core concepts in the current spintronics research. The efficiency of the interconversion between charge and spin current is estimated based on Berry curvature of Bloch wavefunction in th e linear-response regime. Beyond the linear regime, nonlinear spin-charge conversion in the higher-order electric field terms has recently been demonstrated in noncentrosymmetric materials with nontrivial spin texture in the momentum space. Here we report the observation of the nonlinear charge-spin conversion in a nominally centrosymmetric oxide material, SrIrO3, by breaking inversion symmetry at the interface. A large second-order magnetoelectric coefficient is observed at room temperature because of the antisymmetric spin-orbit interaction at the interface of Dirac semimetallic bands, which is subject to the symmetry constraint of the substrates. Our study suggests that nonlinear spin-charge conversion can be induced in many materials with strong spin-orbit interaction at the interface by breaking the local inversion symmetry to give rise to spin splitting in otherwise spin degenerate systems.
We present magnetization and magnetostriction studies of the insulating perovskite LaCoO3 in magnetic fields approaching 100 T. In marked contrast with expectations from single-ion models, the data reveal two distinct first-order spin transitions and well-defined magnetization plateaux. The magnetization at the higher plateau is only about half the saturation value expected for spin-1 Co3+ ions. These findings strongly suggest collective behavior induced by strong interactions between different electronic -- and therefore spin -- configurations of Co3+ ions. We propose a model of these interactions that predicts crystalline spin textures and a cascade of four magnetic phase transitions at high fields, of which the first two account for the experimental data.
Bulk and nanoparticle powders of LaCoO3 (LCO) were synthesized, and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T ~ 85 K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To ~ 40K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co3O4 impurity phase, which induces tensile strain on the LCO lattice. A core-interface model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.
216 - Bongjae Kim , Kyoo Kim , 2014
We have investigated the pressure-induced spin-state transition in Co$^{2+}$ systems in terms of a competition between the Hunds exchange energy ($J$) and the crystal-field splitting ($Delta_{CF}$). First, we show the universal metastability of the l ow-spin state in octahedrally coordinated Co$^{2+}$ systems. Then we present the strategy to search for a Co$^{2+}$ system, for which the mechanism of spin-state and metal-insulator transitions is governed not by the Mott physics but by $J$ vs. $Delta_{CF}$ physics. Using CoCl$_{2}$ as a prototypical Co$^{2+}$ system, we have demonstrated the pressure-induced spin-state transition from high-spin to low-spin, which is accompanied with insulator-to-metal and antiferromagnetic to half-metallic ferromagnetic transitions. Combined with metastable character of Co$^{2+}$ and the high compressibility nature of CoCl$_{2}$, the transition pressure as low as 27 GPa can be identified on the basis of $J$ vs. $Delta_{CF}$ physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا