ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 1993J VLBI (IV): A Geometric Determination of the Distance to M81 with the Expanding Shock Front Method

90   0   0.0 ( 0 )
 نشر من قبل Norbert Bartel
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the angular expansion velocities, determined with VLBI, with the linear expansion velocities measured from optical spectra for supernova 1993J in the galaxy M81, over the period from 7 d to ~9 yr after shock breakout. We estimate the distance to SN 1993J using the Expanding Shock Front Method (ESM). We find the best distance estimate is obtained by fitting the angular velocity of a point halfway between the contact surface and outer shock front to the maximum observed hydrogen gas velocity. We obtain a direct, geometric, distance estimate for M81 of D=3.96+-0.05+-0.29 Mpc with statistical and systematic error contributions, respectively, corresponding to a total standard error of $+-0.29 Mpc. The upper limit of 4.25 Mpc corresponds to the hydrogen gas with the highest observed velocity reaching no farther out than the contact surface a few days after shock breakout. The lower limit of 3.67 Mpc corresponds to this hydrogen gas reaching as far out as the forward shock for the whole period, which would mean that Rayleigh-Taylor fingers have grown to the forward shock already a few days after shock breakout. Our distance estimate is 9+-13 % larger than that of 3.63+-0.34 Mpc from the HST Key Project, which is near our lower limit but within the errors.



قيم البحث

اقرأ أيضاً

Type IIP supernovae are recognized as independent extragalactic distance indicators, however, keeping in view of the diverse nature of their observed properties as well as the availability of good quality data, more and newer events need to be tested for their applicability as a reliable distance indicators. We use early photometric and spectroscopic data of eight type-IIP SNe to derive distances to their host galaxies using the expanding photosphere method (EPM). For five of these, EPM is applied for the first time. In this work, we improved EPM application by using SYNOW estimated velocities and by semi-deconvolving the broadband filter responses while deriving color temperatures and black-body angular radii. We find that the derived EPM distances are consistent with that derived using other redshift independent methods.
We report on VLA measurements between 1 and 45 GHz of the evolving radio spectral energy distribution (SED) of SN 1986J, made in conjunction with VLBI imaging. The SED of SN 1986J is unique among supernovae, and shows an inversion point and a high-fr equency turnover. Both are due to the central component seen in the VLBI images, and both are progressing downward in frequency with time. The optically-thin spectral index of the central component is almost the same as that of the shell. We fit a simple model to the evolving SED consisting of an optically-thin shell and a partly-absorbed central component. The evolution of the SED is consistent with that of a homologously expanding system. Both components are fading, but the shell more rapidly. We conclude that the central component is physically inside the expanding shell, and not a surface hot-spot central only in projection. Our observations are consistent with the central component being due to interaction of the shock with the dense and highly-structured circumstellar medium that resulted from a period of common-envelope evolution of the progenitor. However a young pulsar-wind nebula or emission from an accreting black hole can also not be ruled out at this point.
SN 1993J is one of the best studied Type IIb supernovae. Spectropolarimetric data analyses were published over two decades ago at a time when the field of supernova spectropolarimetry was in its infancy. Here we present a new analysis of the spectrop olarimetric data of SN 1993J and an improved estimate of its interstellar polarization (ISP) as well as a critical review of ISP removal techniques employed in the field. The polarization of SN 1993J is found to show significant alignment on the $q-u$ plane, suggesting the presence of a dominant axis and therefore of continuum polarization. We also see strong line polarization features, including $mathrm{Hbeta}$, He,{sc i} $lambda 5876$, $mathrm{Halpha}$, He,{sc i} $lambda 6678$, He,{sc i} $lambda 7065$, and high velocity (HV) components of He,{sc i} $lambda 5876$ and $mathrm{Halpha}$. SN 1993J is therefore the second example of a stripped envelope supernova, alongside iPTF13bvn, with prominent HV helium polarization features, and the first to show a likely HV halpha contribution. Overall, we determine that the observed features can be interpreted as the superposition of anisotropically distributed line forming regions over ellipsoidal ejecta. We cannot exclude the possibility of an off-axis energy source within the ejecta. These data demonstrate the rich structures that are inaccessible if solely considering the flux spectra but can be probed by spectropolarimetric observations. In future studies, the new ISP corrected data can be used in conjunction with 3D radiative transfer models to better map the geometry of the ejecta of SN 1993J.
128 - Eduardo Ros 2008
The radio source M81* at the core of the nearby spiral galaxy M81 is a low-luminosity active galactic nucleus. The close distance of 3.63Mpc allows its morphology to be studied in great detail. Here we present preliminary results from continuum 7 mm VLBI observations of its core, using phase-referencing techniques. These observations set constrains on the size of M81* at this frequency and enable us to test the frequency dependence on its physical properties.
We present our observations of the radio emission from supernova (SN) 1993J, in M 81 (NGC 3031), made with the VLA, from 90 to 0.7 cm, as well as numerous measurements from other telescopes. The combined data set constitutes probably the most detaile d set of measurements ever established for any SN outside of the Local Group in any wavelength range. Only SN 1987A in the LMC has been the subject of such an intensive observational program. The radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-SN stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The 85 - 110 GHz measurements at early times are not well fitted by the parameterization, unlike the cm wavelength measurements. 2) At mid-cm wavelengths there is some deviation from the fitted radio light curves. 3) At a time ~3100 days after shock breakout, the decline rate of the radio emission steepens without change in the spectral index. This decline is best described as an exponential decay starting at day 3100 with an e-folding time of ~1100 days. 4) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until the break in that decline rate. Moreover, neither a purely SSA nor a purely FFA absorbing models can provide a fit that simultaneously reproduces the light curves, the spectral index evolution, and the brightness temperature evolution. 5) The radio and X-ray light curves exhibit similar behavior and suggest a sudden drop in the SN progenitor mass-loss rate at ~8000 years prior to shock breakout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا