ﻻ يوجد ملخص باللغة العربية
We report on VLA measurements between 1 and 45 GHz of the evolving radio spectral energy distribution (SED) of SN 1986J, made in conjunction with VLBI imaging. The SED of SN 1986J is unique among supernovae, and shows an inversion point and a high-frequency turnover. Both are due to the central component seen in the VLBI images, and both are progressing downward in frequency with time. The optically-thin spectral index of the central component is almost the same as that of the shell. We fit a simple model to the evolving SED consisting of an optically-thin shell and a partly-absorbed central component. The evolution of the SED is consistent with that of a homologously expanding system. Both components are fading, but the shell more rapidly. We conclude that the central component is physically inside the expanding shell, and not a surface hot-spot central only in projection. Our observations are consistent with the central component being due to interaction of the shock with the dense and highly-structured circumstellar medium that resulted from a period of common-envelope evolution of the progenitor. However a young pulsar-wind nebula or emission from an accreting black hole can also not be ruled out at this point.
We present a new 5-GHz global-VLBI image of supernova 1986J, observed in 2014 at $t=31.6$ yr after the explosion, and compare it to previous images to show the evolution of the supernova. Our new image has a dynamic range of ~100 and a background rms
We discuss our VLA and VLBI observations of supernova 1986J, which is characterized by a compact radio-bright component within the expanding shell of ejecta. No other supernova (SN) has such a central component at cm wavelengths. The central componen
We discuss the possibility of obtaining Fast Radio Bursts (FRBs) from the interior of supernovae, in particular SN 1986J. Young neutron stars are involved in many of the possible scenarios for the origin of FRBs, and it has been suggested that the hi
We present late-time optical images and spectra of the Type IIn supernova SN 1986J. HST ACS/WFC images obtained in February 2003 show it to be still relatively bright with m(F606W) = 21.4 and m(F814W) = 20.0 mag. Compared against December 1994 HST WF
In this catalog we compile information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) as well as all other bright ($m_{peak}leq17$), spectroscopically confirmed supernovae found in 2017, totaling 308 supernovae