ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic elimination in quantum stochastic models

187   0   0.0 ( 0 )
 نشر من قبل Luc Bouten
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a physical system with a coupling to bosonic reservoirs via a quantum stochastic differential equation. We study the limit of this model as the coupling strength tends to infinity. We show that in this limit the solution to the quantum stochastic differential equation converges strongly to the solution of a limit quantum stochastic differential equation. In the limiting dynamics the excited states are removed and the ground states couple directly to the reservoirs.



قيم البحث

اقرأ أيضاً

222 - Martin Fraas 2014
We derive an adiabatic theory for a stochastic differential equation, $ varepsilon, mathrm{d} X(s) = L_1(s) X(s), mathrm{d} s + sqrt{varepsilon} L_2(s) X(s) , mathrm{d} B_s, $ under a condition that instantaneous stationary states of $L_1(s)$ are als o stationary states of $L_2(s)$. We use our results to derive the full statistics of tunneling for a driven stochastic Schr{o}dinger equation describing a dephasing process.
235 - Luc Bouten 2017
In this paper we study quantum stochastic differential equations (QSDEs) that are driven by strongly squeezed vacuum noise. We show that for strong squeezing such a QSDE can be approximated (via a limit in the strong sense) by a QSDE that is driven b y a single commuting noise process. We find that the approximation has an additional Hamiltonian term.
We develop a general technique for proving convergence of repeated quantum interactions to the solution of a quantum stochastic differential equation. The wide applicability of the method is illustrated in a variety of examples. Our main theorem, whi ch is based on the Trotter-Kato theorem, is not restricted to a specific noise model and does not require boundedness of the limit coefficients.
We introduce the notion of perturbations of quantum stochastic models using the series product, and establish the asymptotic convergence of sequences of quantum stochastic models under the assumption that they are related via a right series product p erturbation. While the perturbing models converge to the trivial model, we allow that the individual sequences may be divergent corresponding to large model parameter regimes that frequently occur in physical applications. This allows us to introduce the concept of asymptotically equivalent models, and we provide several examples where we replace one sequence of models with an equivalent one tailored to capture specific features. These examples include: a series product formulation of the principle of virtual work; essential commutativity of the noise in strong squeezing models; the decoupling of polarization channels in scattering by Faraday rotation driven by a strong laser field; and an application to quantum local asymptotic normality.
132 - Yu Pan , Zibo Miao , Nina H. Amini 2015
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. I n this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure could be taken as the error of adiabatic approximation. We prove under certain conditions, this error can be precisely estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example on which the applicability of the adiabatic theorem is questionable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا