ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsational frequencies of the eclipsing delta-Scuti star HD 172189

445   0   0.0 ( 0 )
 نشر من قبل Jose Eduardo Costa Dr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The eclipsing delta-Scuti star HD 172189 is a probable member of the open cluster IC 4756 and a promising candidate target for the CoRoT mission. The detection of pulsation modes is the first step in the asteroseismological study of the star. Further, the calculation of the orbital parameters of the binary system allows us to make a dynamical determination of the mass of the star, which works as an important constraint to test and calibrate the asteroseismological models. From a detailed frequency analysis of 210 hours of photometric data of HD 172189 obtained from the STEPHI XIII campaign we have identified six pulsation frequencies with a confidence level of 99% and a seventh with a 65% confidence level in the range between 100-300 uHz. In addiction, three eclipses were observed during the campaign, allowing us to improve the determination of the orbital period of the system.



قيم البحث

اقرأ أيضاً

Hybrid stars of the {gamma} Doradus and {delta} Scuti pulsation types have great potential for asteroseismic analysis to explore their interior structure. To achieve this, mode identi- fications of pulsational frequencies observed in the stars must b e made, a task which is far from simple. In this work we begin the analysis by scrutinizing the frequencies found in the CoRoT photometric satellite measurements and ground-based high-resolution spectroscopy of the hybrid star HD 49434. The results show almost no consistency between the frequencies found using the two techniques and no characteristic period spacings or couplings were identified in either dataset. The spectroscopic data additionally show no evidence for any long term (5 year) variation in the dominant frequency. The 31 spectroscopic frequencies identified have standard deviation profiles suggesting multiple modes sharing (l, m) in the {delta} Scuti frequency region and several skewed modes sharing the same (l, m) in the {gamma} Doradus frequency region. In addition, there is a clear frequency in the {gamma} Doradus frequency region that appears to be unrelated to the others. We conclude HD 49434 remains a {delta} Scuti/ {gamma} Doradus candidate hybrid star but more sophisticated models dealing with rotation are sought to obtain a clear picture of the pulsational behaviour of this star.
91 - V. Antoci , M. Cunha , G. Houdek 2014
HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in delta Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of `pure stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar delta Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.
111 - M. Breger 2005
Extensive photometric multisite campaigns of the Delta Scuti variable FG Vir are presented. For the years 2003 and 2004, 926 hours of photometry at the millimag precision level were obtained. The combinations with earlier campaigns lead to excellent frequency resolution and high signal/noise. A multifrequency analysis yields 79 frequencies. This represents a new record for this type of star. The modes discovered earlier were confirmed. Pulsation occurs over a wide frequency band from 5.7 to 44.3 c/d with amplitudes of 0.2 mmag or larger. Within this wide band the frequencies are not distributed at random, but tend to cluster in groups. A similar feature is seen in the power spectrum of the residuals after 79 frequencies are prewhitened. This indicates that many additional modes are excited. The interpretation is supported by a histogram of the photometric amplitudes, which shows an increase of modes with small amplitudes. The old question of the missing modes may be answered now: the large number of detected frequencies as well as the large number of additional frequencies suggested by the power spectrum of the residuals con rms the theoretical prediction of a large number of excited modes. FG Vir shows a number of frequency combinations of the dominant mode at 12.7162 c/d (m = 0) with other modes of relatively high photometric amplitudes. The amplitudes of the frequency sums are higher than those of the differences. A second mode (20.2878 c/d) also shows combinations. This mode of azimuthal order m = -1 is coupled with two other modes of m = +1.
MOST observations and model analysis of the Herbig Ae star HD 34282 (V1366 Ori) reveal {delta}-Scuti pulsations. 22 frequencies are observed, 10 of which confirm those previously identified by Amado et al. (2006), and 12 of which are newly discovered in this work. We show that the weighted-average frequency in each group fits the radial p-mode frequencies of viable models. We argue that the observed pulsation spectrum extends just to the edge to the acoustic cut-off frequency and show that this also is consistent with our best-fitting models.
Only three magnetic $delta$ Scuti stars are known as of today. HD 41641 is a $delta$ Scuti star showing chemical peculiarities and rotational modulation of its light-curve, making it a good magnetic candidate. We acquired spectropolarimetric observat ions of this star with Narval at TBL to search for the presence of a magnetic field and characterize it. We indeed clearly detect a magnetic field in HD 41641, making it the fourth known magnetic $delta$ Scuti star. Our analysis shows that the field is of fossil origin, like magnetic OBA stars, but with a complex field structure rather than the much more usual dipolar structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا