ﻻ يوجد ملخص باللغة العربية
Iron, cobalt and nickel nanoparticles, grown in the gas phase, are known to arrange in chains and bracelet-like rings due to the long-range dipolar interaction between the ferromagnetic (or super-paramagnetic) particles. We investigate the dynamics and thermodynamics of such magnetic dipolar nanoparticles for low densities using molecular dynamics simulations and analyze the influence of temperature and external magnetic fields on two- and three-dimensional systems. The obtained phase diagrams can be understood by using simple energetic arguments.
The large surface density changes associated with the (100) noble metals surface hex-reconstruction suggest the use of non-particle conserving simulation methods. We present an example of a surface Grand Canonical Monte Carlo applied to the transform
The magnetic properties of Li_{1-x}Ni_{1+x}O_2 compounds with x ranging between 0.02 and 0.2 are investigated. Magnetization and ac susceptibility measured at temperatures between 2 K and 300 K reveal a high sensitivity to x, the excess Nickel concen
The melting and crystallization of Al50Ni50} are studied by means of molecular dynamics computer simulations, using a potential of the embedded atom type to model the interactions between the particles. Systems in a slab geometry are simulated where
Molecular dynamics simulations on tensile deformation of initially defect free single crystal copper nanowire oriented in <001>{100} has been carried out at 10 K under adiabatic and isothermal loading conditions. The tensile behaviour was characteriz
A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the simulation of polymer chains suspended in a solvent. The polymers are represented as chains of hard spheres tethered by square wells and interact with the solve