ﻻ يوجد ملخص باللغة العربية
We present an exact theory of the BEC-BCS crossover in the BEC regime, which treats explicitely dimers as made of two fermions. We apply our framework, at zero temperature, to the calculation of the equation of state. We find that, when expanding the chemical potential in powers of the density n up to the Lee-Huang-Yang order, proportional to n^3/2, the result is identical to the one of elementary bosons in terms of the dimer-dimer scattering length a_M, the composite nature of the dimers appearing only in the next order term proportional to n^2 .
We present an exact many-body theory of ultracold fermionic gases for the Bose-Einstein condensation (BEC) regime of the BEC-BCS crossover. This is a purely fermionic approach which treats explicitely and systematically the dimers formed in the BEC r
We discuss the zero-temperature hydrodynamics equations of bosonic and fermionic superfluids and their connection with generalized Gross-Pitaevskii and Ginzburg-Landau equations through a single superfluid nonlinear Schrodinger equation.
We investigate the thermodynamic properties of a toy model of glasses: a hard-core lattice gas with nearest neighbor interaction in one dimension. The time-evolution is Markovian, with nearest-neighbor and next-nearest neighbor hoppings, and the tran
We propose a phenomenological approach for the equation of state of a unitary Fermi gas. The universal equation of state is parametrised in terms of Fermi-Dirac integrals. This reproduces the experimental data over the accessible range of fugacity an
The weak bosons, leptons and quarks are considered as composite particles. The interaction of the constituents is a confining gauge interaction. The standard electroweak model is a low energy approximation. The mixing of the neutral weak boson with t