ﻻ يوجد ملخص باللغة العربية
We investigate the thermodynamic properties of a toy model of glasses: a hard-core lattice gas with nearest neighbor interaction in one dimension. The time-evolution is Markovian, with nearest-neighbor and next-nearest neighbor hoppings, and the transition rates are assumed to satisfy detailed balance condition, but the system is non-ergodic below a glass temperature. Below this temperature, the system is in restricted thermal equilibrium, where both the number of sectors, and the number of accessible states within a sector grow exponentially with the size of the system. Using partition functions that sum only over dynamically accessible states within a sector, and then taking a quenched average over the sectors, we determine the exact equation of state of this system.
Aiming at studying the emergence of Non-Equilibrium Steady States (NESS) in quantum integrable models by means of an exact analytical method, we focus on the Tonks-Girardeau or hard-core boson limit of the Lieb-Liniger model. We consider the abrupt e
The exact nonequilibrium steady state solution of the nonlinear Boltzmann equation for a driven inelastic Maxwell model was obtained by Ben-Naim and Krapivsky [Phys. Rev. E 61, R5 (2000)] in the form of an infinite product for the Fourier transform o
We introduce a model of interacting lattices at different resolutions driven by the two-dimensional Ising dynamics with a nearest-neighbor interaction. We study this model both with tools borrowed from equilibrium statistical mechanics as well as non
We obtain exact results on autocorrelation of the order parameter in the nonequilibrium stationary state of a paradigmatic model of spontaneous collective synchronization, the Kuramoto model of coupled oscillators, evolving in presence of Gaussian, w
Reassessment of the critical temperature and density of the restricted primitive model of an ionic fluid by Monte Carlo simulations performed for system sizes with linear dimension up to $L/sigma=34$ and sampling of $sim 10^9$ trial moves leads to $T