ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Synchrotron Emission from Secondary Leptons in the Vicinity of Sgr A*

106   0   0.0 ( 0 )
 نشر من قبل Roland M. Crocker
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A point-like source of ~TeV gamma-rays has recently been seen towards the Galactic center by HESS and other air Cerenkov telescopes. In recent work (Ballantyne et al. 2007), we demonstrated that these gamma-rays can be attributed to high-energy protons that (i) are accelerated close to the event horizon of the central black hole, Sgr A*, (ii) diffuse out to ~pc scales, and (iii) finally interact to produce gamma-rays. The same hadronic collision processes will necessarily lead to the creation of electrons and positrons. Here we calculate the synchrotron emissivity of these secondary leptons in the same magnetic field configuration through which the initiating protons have been propagated in our model. We compare this emission with the observed ~GHz radio spectrum of the inner few pc region which we have assembled from archival data and new measurements we have made with the Australia Telescope Compact Array. We find that our model predicts secondary synchrotron emission with a steep slope consistent with the observations but with an overall normalization that is too large by a factor of ~ 2. If we further constrain our theoretical gamma-ray curve to obey the implicit EGRET upper limit on emission from this region we predict radio emission that is consistent with observations, i.e., the hadronic model of gamma ray emission can, simultaneously and without fine-tuning, also explain essentially all the diffuse radio emission detected from the inner few pc of the Galaxy.



قيم البحث

اقرأ أيضاً

155 - D.I. Jones 2008
We report radio continuum observations with the Australia Telescope Compact Array of two molecular clouds. The impetus for these observations is a search for synchrotron radiation by cosmic ray secondary electrons/positrons in a region of enhanced de nsity and possibly high magnetic field. We present modelling which shows that there should be an appreciable flux of synchrotron above the more diffuse, galactic synchrotron background. The starless core G333.125-0.562 and infrared source IRAS 15596-5301 were observed at 1384 and 2368 MHz. For G333.125-0.562, we find no significant levels of radio emission from this source at either frequency, nor any appreciable polarisation: we place an upper limit on the radio continuum flux from this source of 0.5 mJy per beam at both 1384 and 2368 MHz. Due to the higher than expected flux density limits, we also obtained archival ATCA data at 8640 MHz for this cloud and place an upper limit on the flux density of 50 micro-Jy per beam. Assuming the cosmic ray spectrum is similar to that near the Sun, and given the clouds molecular density and mass, we place an upper limit on the magnetic field of 500 micro-G. IRAS 15596-5301, with an RMS of 50 micro-Jy per beam at 1384 MHz, shows an HII region consistent with optically thin free-free emission already detected at 4800 MHz. We use the same prescription as G333 to constrain the magnetic field from this cloud to be less than 500 micro-G. We find that these values are not inconsistent with the view that magnetic field values scale with the average density of the molecular cloud.
The detection of the radio emission following a neutrino interaction in ice is a promising technique to obtain significant sensitivities to neutrinos with energies above PeV. The detectable radio emission stems from particle showers in the ice. So fa r, detector simulations have considered only the radio emission from the primary interaction of the neutrino. For this study, existing simulation tools have been extended to cover secondary interactions from muons and taus. We find that secondary interactions of both leptons add up to 25% to the effective volume of neutrino detectors. Also, muon and tau neutrinos can create several detectable showers, with the result that double signatures do not constitute an exclusive signature for tau neutrinos. We also find that the background of atmospheric muons from cosmic rays is non-negligible for in-ice arrays and that an air shower veto should be considered helpful for radio detectors.
103 - G. Ponti , E. George , S. Scaringi 2017
We present the first fully simultaneous fits to the NIR and X-ray spectral slope (and its evolution) during a very bright flare from Sgr A*, the supermassive black hole at the Milky Ways center. Our study arises from ambitious multi-wavelength monito ring campaigns with XMM-Newton, NuSTAR and SINFONI. The average multi-wavelength spectrum is well reproduced by a broken power-law with $Gamma_{NIR}=1.7pm0.1$ and $Gamma_X=2.27pm0.12$. The difference in spectral slopes ($DeltaGamma=0.57pm0.09$) strongly supports synchrotron emission with a cooling break. The flare starts first in the NIR with a flat and bright NIR spectrum, while X-ray radiation is detected only after about $10^3$ s, when a very steep X-ray spectrum ($DeltaGamma=1.8pm0.4$) is observed. These measurements are consistent with synchrotron emission with a cooling break and they suggest that the high energy cut-off in the electron distribution ($gamma_{max}$) induces an initial cut-off in the optical-UV band that evolves slowly into the X-ray band. The temporal and spectral evolution observed in all bright X-ray flares are also in line with a slow evolution of $gamma_{max}$. We also observe hints for a variation of the cooling break that might be induced by an evolution of the magnetic field (from $Bsim30pm8$ G to $Bsim4.8pm1.7$ G at the X-ray peak). Such drop of the magnetic field at the flare peak would be expected if the acceleration mechanism is tapping energy from the magnetic field, such as in magnetic reconnection. We conclude that synchrotron emission with a cooling break is a viable process for Sgr A*s flaring emission.
We present radio continuum light curves of the magnetar SGR J1745$-$2900 and Sgr A* obtained with multi-frequency, multi-epoch Very Large Array observations between 2012 and 2014. During this period, a powerful X-ray outburst from SGR J1745$-$2900 oc curred on 2013-04-24. Enhanced radio emission is delayed with respect to the X-ray peak by about seven months. In addition, the flux density of the emission from the magnetar fluctuates by a factor of 2 to 4 at frequencies between 21 and 41 GHz and its spectral index varies erratically. Here we argue that the excess fluctuating emission from the magnetar arises from the interaction of a shock generated from the X-ray outburst with the orbiting ionized gas at the Galactic center. In this picture, variable synchrotron emission is produced by ram pressure variations due to inhomogeneities in the dense ionized medium of the Sgr A West bar. The pulsar with its high transverse velocity is moving through a highly blue-shifted ionized medium. This implies that the magnetar is at a projected distance of $sim0.1$ pc from Sgr A* and that the orbiting ionized gas is partially or largely responsible for a large rotation measure detected toward the magnetar. Despite the variability of Sgr A* expected to be induced by the passage of the G2 cloud, monitoring data shows a constant flux density and spectral index during this period
Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter ann ihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with thermal annihilation cross-sections, i.e. (sigma v) = 3 x 10^-26 cm^3/s, and masses M_DM < 10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا