ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic synchrotron emission from WIMPs at radio frequencies

393   0   0.0 ( 0 )
 نشر من قبل Roberto Lineros
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with thermal annihilation cross-sections, i.e. (sigma v) = 3 x 10^-26 cm^3/s, and masses M_DM < 10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.



قيم البحث

اقرأ أيضاً

180 - A. Waelkens 2008
We present a publicly available code called Hammurabi for generating mock polarized observations of Galactic synchrotron emission for telescopes like LOFAR, SKA, Planck and WMAP, based on model inputs for the Galactic magnetic field (GMF), the cosmic -ray density distribution and the thermal electron density. We also present mock UHECR deflection measure (UDM) maps based on model inputs for the GMF. In future, when UHECR sources are identified, this will allow us to define UDM as a GMF probe in a similar way as polarized radio sources permit us to define rotation measures. To demonstrate the codes abilities mock observations are compared to real data as a means to constrain the input parameters of our simulations with a focus on large-scale magnetic field properties. As expected, attempts at trying to model the synchrotron, UHECR deflection and RM input parameters, show that any additional observational data set greatly increases the constraints on the models. The hammurabi code addresses this by allowing to perform simulations of several different data sets simultaneously, providing the means for a more reliable constraint of the magnetized inter-stellar-medium.
223 - J. F. Radcliffe 2021
For nearly seven decades astronomers have been studying active galaxies, that is to say galaxies with actively accreting central supermassive black holes, AGN. A small fraction of these are characterized by luminous, powerful radio emission: this cla ss is known as radio-loud. A substantial fraction, the so-called radio-quiet AGN population, displays intermediate or weak radio emission. However, an appreciable fraction of strong X-rays emitting AGN are characterized by the absence of radio emission, down to an upper limit of about $10^{-7}$ times the luminosity of the most powerful radio-loud AGN. We wish to address the nature of these - seemingly radio-silent - X-ray-luminous AGN and their host galaxies: is there any radio emission, and if so, where does it originate? Focusing on the GOODS-N field, we examine the nature of these objects employing stacking techniques on ultra-deep radio data obtained with the JVLA. We combine these radio data with Spitzer far-infrared data. We establish the absence, or totally insignificant contribution of jet-driven radio-emission in roughly half of the otherwise normal population of X-ray luminous AGN, which appear to reside in normal star-forming galaxies. We conclude that AGN- or jet-driven radio emission is simply a mechanism that may be at work or may be dormant in galaxies with actively accreting black holes. The latter can be classified as radio-silent AGN.
263 - M. N. Iacolina 2009
The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsar s are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-314 in three steps, correcting for the effect of the dispersion due to the interstellar medium, eliminating the orbital motions effects, and finally folding the time series. No radio pulsation is present in the analyzed data down to a limit of 68 microJy at 6.4 GHz and 26 microJy at 8.5 GHz. We discuss several mechanisms that could prevent the detection, concluding that beaming factor and intrinsic low luminosity are the most likely explanations.
115 - E. Chiaraluce 2020
A thorough study of radio emission in Active Galactic Nuclei (AGN) is of fundamental importance to understand the physical mechanisms responsible for the emission and the interplay between accretion and ejection processes. High frequency radio observ ations can target the nuclear contribution of smaller emitting regions and are less affected by absorption. We present JVLA 22 and 45 GHz observations of 16 nearby (0.003$le$z$le$0.3) hard - X-rays selected AGN at the (sub)-kpc scale with tens uJy beam$^{-1}$ sensitivity. We detected 15/16 sources, with flux densities ranging from hundreds uJy beam$^{-1}$ to tens Jy (specific luminosities from $sim$10$^{20}$ to $sim$10$^{25},W,Hz^{-1}$ at 22 GHz). All detected sources host a compact core, with 8 being core-dominated at either frequencies, the others exhibiting also extended structures. Spectral indices range from steep to flat/inverted. We interpret this evidence as either due to a core+jet system (6/15), a core accompanied by surrounding star formation (1/15), to a jet oriented close to the line of sight (3/15), to emission from a corona or the base of a jet (1/15), although there might be degeneracies between different processes. Four sources require more data to shed light on their nature. We conclude that, at these frequencies, extended, optically-thin components are present together with the flat-spectrum core. The ${L_R}/{L_X}sim10^{-5}$ relation is roughly followed, indicating a possible contribution to radio emission from a hot corona. A weakly significant correlation between radio core (22 and 45 GHz) and X-rays luminosities is discussed in the light of an accretion-ejection framework.
The rare intermittent pulsars pose some of the most challenging questions surrounding the pulsar emission mechanism, but typically have relatively minimal low-frequency ($lesssim$ 300 MHz) coverage. We present the first low-frequency detection of the intermittent pulsar J1107-5907 with the Murchison Widefield Array (MWA) at 154 MHz and the simultaneous detection from the recently upgraded Molonglo Observatory Synthesis Telescope (UTMOST) at 835 MHz, as part of an on-going observing campaign. During a 30-minute simultaneous observation, we detected the pulsar in its bright emission state for approximately 15 minutes, where 86 and 283 pulses were detected above a signal-to-noise threshold of 6 with the MWA and UTMOST, respectively. Of the detected pulses, 51 had counterparts at both frequencies and exhibited steep spectral indices for both the bright main pulse component and the precursor component. We find that the bright state pulse energy distribution is best parameterised by a log-normal distribution at both frequencies, contrary to previous results which suggested a power law distribution. Further low-frequency observations are required in order to explore in detail aspects such as pulse-to-pulse variability, intensity modulations and to better constrain the signal propagation effects due to the interstellar medium and intermittency characteristics at these frequencies. The spectral index, extended profile emission covering a large fraction of pulse longitude, and the broadband intermittency of PSR J1107-5907 suggests that future low-frequency pulsar searches, for instance those planned with SKA-Low, will be in an excellent position to find and investigate new pulsars of this type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا