ﻻ يوجد ملخص باللغة العربية
The amount of $^{56}$Ni produced in type Ia supernova (SN Ia) explosion is probably the most important physical parameter underlying the observed correlation of SN Ia luminosities with their light curves. Based on an empirical relation between the $^{56}$Ni mass and the light curve parameter $triangle m_{15}$, we obtained rough estimates of the $^{56}$Ni mass for a large sample of nearby SNe Ia with the aim of exploring the diversity in SN Ia. We found that the derived $^{56}$Ni masses for different SNe Ia could vary by a factor of ten (e.g., $M_{rm Ni}=0.1 - 1.3$ $M_{odot}$), which cannot be explained in terms of the standard Chandrasekhar-mass model (with a $^{56}$Ni mass production of 0.4 -- 0.8 $M_{odot}$). Different explosion and/or progenitor models are clearly required for various SNe Ia, in particular, for those extremely nickel-poor and nickel-rich producers. The nickel-rich (with $M_{rm Ni}$ $>$ 0.8 $M_{odot}$) SNe Ia are very luminous and may have massive progenitors exceeding the Chandrasekhar-mass limit since extra progenitor fuel is required to produce more $^{56}$Ni to power the light curve. This is also consistent with the finding that the intrinsically bright SNe Ia prefer to occur in stellar environments of young and massive stars. For example, 75% SNe Ia in spirals have $Delta m_{15} < 1.2$ while this ratio is only 18% in E/S0 galaxies. On the other hand, the nickel-poor SNe Ia (with $M_{rm Ni}$ $<$ 0.2 $M_{odot}$) may invoke the sub-Chandrasekhar model, as most of them were found in early-type E/S0 galaxies dominated by the older and low-mass stellar populations. This indicates that SNe Ia in spiral and E/S0 galaxies have progenitors of different properties.
We present (56)Ni mass estimates for seventeen well-observed type Ia supernovae determined by two independent methods. Estimates of the (56)Ni mass for each type Ia supernova are determined from (1) modeling of the late-time nebular spectrum and (2)
Recent studies have shown how the distribution of $^{56}$Ni within the ejecta of type Ia supernovae can have profound consequences on the observed light curves. Observations at early times can therefore provide important details on the explosion phys
Recent studies have demonstrated the diversity in type Ia supernovae (SNe Ia) at early times and highlighted a need for a better understanding of the explosion physics as manifested by observations soon after explosion. To this end, we present a Mont
We report on systematic radial velocity surveys for white dwarf - white dwarf binaries (double degenerates - DDs) including SPY (ESO Supernovae Ia progenitor survey) recently carried out at the VLT. A large sample of DD will allow us to put strong co
We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious diffculties, i