ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustering Properties of restframe UV selected galaxies II: Migration of Star Formation sites with cosmic time from GALEX and CFHTLS

84   0   0.0 ( 0 )
 نشر من قبل Sebastien Heinis
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the clustering properties of ultraviolet selected galaxies by using GALEX-SDSS data at z<0.6 and CFHTLS deep u imaging at z=1. These datasets provide a unique basis at z< 1 which can be directly compared with high redshift samples built with similar selection criteria. We discuss the dependence of the correlation function parameters (r0, delta) on the ultraviolet luminosity as well as the linear bias evolution. We find that the bias parameter shows a gradual decline from high (b > 2) to low redshift (b ~ 0.79^{+0.1}_{-0.08}). When accounting for the fraction of the star formation activity enclosed in the different samples, our results suggest that the bulk of star formation migrated from high mass dark matter halos at z>2 (10^12 < M_min < 10^13 M_sun, located in high density regions), to less massive halos at low redshift (M_min < 10^12 M_sun, located in low density regions). This result extends the ``downsizing picture (shift of the star formation activity from high stellar mass systems at high z to low stellar mass at low z) to the dark matter distribution.



قيم البحث

اقرأ أيضاً

We present the first measurements of the angular correlation function of galaxies selected in the far (1530 A) and near (2310 A) Ultraviolet from the GALEX survey fields overlapping SDSS DR5 in low galactic extinction regions. The area used covers 12 0 sqdeg (GALEX - MIS) down to magnitude AB = 22, yielding a total of 100,000 galaxies. The mean correlation length is ~ 3.7 pm 0.6 Mpc and no significant trend is seen for this value as a function of the limiting apparent magnitude or between the GALEX bands. This estimate is close to that found from samples of blue galaxies in the local universe selected in the visible, and similar to that derived at z ~ 3 for LBGs with similar rest frame selection criteria. This result supports models that predict anti-biasing of star forming galaxies at low redshift, and brings an additional clue to the downsizing of star formation at z<1.
We present GALEX UV observations of a sample of Low Surface Brightness (LSB) galaxies for which HI data are available, allowing us to estimate their star formation efficiency. We find that the UV light extends to larger radii than the optical light ( some galaxies, but not all, look similar to the recently discovered XUV-disk galaxies). Using a standard calibration to convert the UV light into star formation rates, we obtain lower star formation efficiencies in LSB galaxies than in high surface brightness galaxies by about one order of magnitude. We show however that standard calibrations may not apply to these galaxies, as the FUV-NUV color obtained from the two GALEX bands (FUV and NUV; lambda_eff= 1516 and 2267 A, respectively) is redder than expected for star forming galaxies. This color can be interpreted as a result of internal extinction, modified Initial Mass Function or by star formation histories characterized by bursts followed by quiescent phases. Our analysis favors this latter hypothesis.
We present ultraviolet (UV) integrated colors of 44 Galactic globular clusters (GGCs) observed with the Galaxy Evolution Explorer (GALEX) in both FUV and NUV bands. This data-base is the largest homogeneous catalog of UV colors ever published for ste llar systems in our Galaxy. The proximity of GGCs makes it possible to resolve many individual stars even with the somewhat low spatial resolution of GALEX. This allows us to determine how the integrated UV colors are driven by hot stellar populations, primarily horizontal branch stars and their progeny. The UV colors are found to be correlated with various parameters commonly used to define the horizontal branch morphology. We also investigate how the UV colors vary with parameters like metallicity, age, helium abundance and concentration. We find for the first time that GCs associated with the Sagittarius dwarf galaxy have (FUV-V) colors systematically redder than GGCs with the same metallicity. Finally, we speculate about the presence of an interesting trend, suggesting that the UV color of GCs may be correlated with the mass of the host galaxy, in the sense that more massive galaxies possess bluer clusters.
We measure the projected spatial correlation function w_p(r_p) from a large sample combining GALEX ultraviolet imaging with the SDSS spectroscopic sample. We study the dependence of the clustering strength for samples selected on (NUV - r)_abs color, specific star formation rate (SSFR), and stellar mass. We find that there is a smooth transition in the clustering of galaxies as a function of this color from weak clustering among blue galaxies to stronger clustering for red galaxies. The clustering of galaxies within the green valley has an intermediate strength, and is consistent with that expected from galaxy groups. The results are robust to the correction for dust extinction. The comparison with simple analytical modeling suggests that the halo occupation number increases with older star formation epochs. When splitting according to SSFR, we find that the SSFR is a more sensitive tracer of environment than stellar mass.
The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates in galaxies is investigated for a large sample of galaxies observed with the SPIRE and PACS instruments on Herschel as part of the HerMES project. We buil d flux-limited 250 micron samples of sources at redshift z<1, cross-matched with the Spitzer/MIPS and GALEX catalogues. About 60 % of the Herschel sources are detected in UV. The total IR luminosities, L_IR, of the sources are estimated using a SED-fitting code that fits to fluxes between 24 and 500 micron. Dust attenuation is discussed on the basis of commonly-used diagnostics: the L_IR/L_UV ratio and the slope, beta, of the UV continuum. A mean dust attenuation A_UV of ~ 3 mag is measured in the samples. L_IR/L_UV is found to correlate with L_IR. Galaxies with L_IR > 10 ^{11} L_sun and 0.5< z<1 exhibit a mean dust attenuation A_UV about 0.7 mag lower than that found for their local counterparts, although with a large dispersion. Our galaxy samples span a large range of beta and L_IR/L_UV values which, for the most part, are distributed between the ranges defined by the relations found locally for starburst and normal star-forming galaxies. As a consequence the recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor ~2-3 .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا