ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent spin transport through a 350-micron-thick Silicon wafer

365   0   0.0 ( 0 )
 نشر من قبل Ian Appelbaum
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500ns at 60K.



قيم البحث

اقرأ أيضاً

473 - Biqin Huang 2007
Efficient injection of spin-polarized electrons into the conduction band of silicon is limited by the formation of a silicide at the ferromagnetic metal (FM)/silicon interface. In the present work, this magnetically-dead silicide (where strong spin-s cattering significantly reduces injected spin polarization) is eliminated by moving the FM in the spin injector from the tunnel junction base anode to the emitter cathode and away from the silicon surface. This results in over an order-of-magnitude increase in spin injection efficiency, from a previously-reported magnetocurrent ratio of ~2% to ~35% and an estimated spin polarization in Si from ~1% to at least ~15%. The injector tunnel-junction bias dependence of this spin transport signal is also measured, demonstrating the importance of low bias voltage to preserve high injected spin polarization.
Quantum coherence is of crucial importance for the applicability of donor based quantum computing. In this Letter we describe the observation of the interference of conduction paths induced by two donors in a nano-MOSFET resulting in a Fano resonance . This demonstrates the coherent exchange of electrons between two donors. In addition, the phase difference between the two conduction paths can be tuned by means of a magnetic field, in full analogy to the Aharonov-Bohm effect.
151 - J. Yoneda , W. Huang , M. Feng 2020
A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit. Such overheads could be reduced by coherently transporting qubits across the chip, allowing connectivity beyond immediate neighbours. Here we demonstrate high-fidelity coherent transport of an electron spin qubit between quantum dots in isotopically-enriched silicon. We observe qubit precession in the inter-site tunnelling regime and assess the impact of qubit transport using Ramsey interferometry and quantum state tomography techniques. We report a polarization transfer fidelity of 99.97% and an average coherent transfer fidelity of 99.4%. Our results provide key elements for high-fidelity, on-chip quantum information distribution, as long envisaged, reinforcing the scaling prospects of silicon-based spin qubits.
A longitudinal electric field is used to control the transit time (through an undoped silicon vertical channel) of spin-polarized electrons precessing in a perpendicular magnetic field. Since an applied voltage determines the final spin direction at the spin detector and hence the output collector current, this comprises a spin field-effect transistor. An improved hot-electron spin injector providing ~115% magnetocurrent, corresponding to at least ~38% electron current spin polarization after transport through 10 microns undoped single-crystal silicon, is used for maximum current modulation.
The textbook phonon mean free path (MFP) of heat carrying phonons in silicon at room temperature is ~40 nm. However, a large contribution to the thermal conductivity comes from low-frequency phonons with much longer MFPs. We present a simple experime nt demonstrating that room temperature thermal transport in Si significantly deviates from the diffusion model already at micron distances. Absorption of crossed laser pulses in a freestanding silicon membrane sets up a sinusoidal temperature profile that is monitored via diffraction of a probe laser beam. By changing the period of the thermal grating we vary the heat transport distance within the range ~1-10 {mu}m. At small distances, we observe a reduction in the effective thermal conductivity indicating a transition from the diffusive to the ballistic transport regime for the low-frequency part of the phonon spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا