ﻻ يوجد ملخص باللغة العربية
We show that for a fixed curve $K$ and for a family of variables curves $L$, the number of $n$-Poncelet pairs is $frac{e (n)}{2}$, where $e(n)$ is the number of natural numbers $m$ smaller than $n$ and which satisfies mcd $ (m,n)=1$. The curvee $K$ do not have to be part of the family. In order to show this result we consider an associated billiard transformation and a twist map which preserves area. We use Aubry-Mather theory and the rotation number of invariant curves to obtain our main result. In the last section we estimate the derivative of the rotation number of a general twist map using some properties of the continued fraction expansion .
In this note I provide two extensions of a particular case of the classical Poncelet theorem.
We analyze loci of triangles centers over variants of two-well known triangle porisms: the bicentric family and the confocal family. Specifically, we evoke a more general version of Poncelets closure theorem whereby individual sides can be made tange
In this paper we present an upper bound for the decay of correlation for the stationary stochastic process associated with the Entropy Penalized Method. Let $L(x, v):Tt^ntimesRr^nto Rr$ be a Lagrangian of the form L(x,v) = {1/2}|v|^2 - U(x) + < P,
The action of a Backlund-Darboux transformation on a spectral problem associated with a known integrable system can define a new discrete spectral problem. In this paper, we interpret a slightly generalized version of the binary Backlund-Darboux (or
We consider the Laplacian with a delta potential (a point scatterer) on an irrational torus, where the square of the side ratio is diophantine. The eigenfunctions fall into two classes ---old eigenfunctions (75%) of the Laplacian which vanish at the