ﻻ يوجد ملخص باللغة العربية
Within a half-parsec from the Galactic center (GC), there is a population of coeval young stars which appear to reside in a coherent disk. Surrounding this dynamically-cool stellar system, there is a population of stars with a similar age and much larger eccentricities and inclinations relative to the disk. We propose a hypothesis for the origin of this dynamical dichotomy. Without specifying any specific mechanism, we consider the possibility that both stellar populations were formed within a disk some 6 Myr ago. But this orderly structure was dynamically perturbed outside-in by an intruding object with a mass ~10^4 Msun, which may be an intermediate-mass black hole (IMBH) or a dark stellar cluster hosting an IMBH. We suggest that the perturber migrated inward to ~0.15-0.3pc from the GC under the action of dynamical friction. Along the way, it captured many stars in the outer disk region into its mean-motion resonance, forced them to migrate with it, closely encountered with them, and induced the growth of their eccentricity and inclination. But stars in the inner regions of the disk retain their initial coplanar structure. We predict that some of the inclined and eccentric stars surrounding the disk may have similar Galactocentric semimajor axis. Future precision determination of their kinematic distribution of these stars will not only provide a test for this hypothesis but also evidences for the presence of an IMBH or a dark cluster at the immediate proximity of the massive black hole at the GC. (abridged)
The center of our galaxy is home to a massive black hole, SgrA*, and a nuclear star cluster containing stellar populations of various ages. While the late type stars may be too old to have retained memory of their initial orbital configuration, and h
We present a new directly-observable statistic which uses sky position and proper motion of stars near the Galactic center massive black hole to identify populations with high orbital eccentricities. It is most useful for stars with large orbital per
Over the last 15 years, around a hundred very young stars have been observed in the central parsec of our Galaxy. While the presence of young stars forming one or two stellar disks at approx. 0.1 pc from the supermassive black hole (SMBH) can be unde
Recent observations of the Galactic center revealed a nuclear disk of young OB stars near the massive black hole (MBH), in addition to many similar outlying stars with higher eccentricities and/or high inclinations relative to the disk (some of them
We use new Gaia measurements to explore the origin of the highest velocity stars in the Hypervelocity Star Survey. The measurements reveal a clear pattern in the B-type stars. Halo stars dominate the sample at speeds about 100 km/s below Galactic esc