ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Fracture Function Approach to QCD Initial State Radiation

204   0   0.0 ( 0 )
 نشر من قبل Federico Alberto Ceccopieri
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Ordinary fracture functions, describing hadrons production in the deep inelastic scattering target fragmentation region, are generalized to account for the production of hadrons in arbitrary number, thus offering a renewed framework for dealing with QCD initial state radiation. We also propose a new jet-like observable which measures beam remnants and low-$p_{perp}$ scattering fragments and derive its QCD evolution equations by using Jet Calculus. Possible implications for semi-inclusive deep inelastic scattering and hadron-hadron reactions are shortly discussed.



قيم البحث

اقرأ أيضاً

148 - Wei Zhu 1998
Parton recombination is reconsidered in perturbation theory without using the AGK cutting rules in the leading order of the recombination. We use time-ordered perturbation theory to sum the cut diagrams, which are neglected in the GLR evolution equat ion. We present a set of new evolution equations including parton recombination.
50 - Takuji Tsujimoto 1997
Oxygen to iron abundance ratios of metal-poor stars provide information on nucleosynthesis yields from massive stars which end in Type II supernova explosions. Using a standard model of chemical evolution of the Galaxy we have reproduced the solar ne ighborhood abundance data and estimated the oxygen and iron yields of genuine SN II origin. The estimated yields are compared with the theoretical yields to derive the relation between the lower and upper mass limits in each generation of stars and the IMF slope. Independently of this relation, we furthermore derive the relation between the lower mass limit and the IMF slope from the stellar mass to light ratio in the solar neighborhood. These independent relations unambiguously determine the upper mass limit of $m_u=50 pm 10 M_sun$ and the IMF slope index of 1.3 - 1.6 above 1 M_sun. This upper mass limit corresponds to the mass beyond which stars end as black holes without ejecting processed matter into the interstellar medium. We also find that the IMF slope index below 0.5 M_sun cannot be much shallower than 0.8.
42 - Thomas G. Rizzo 2020
Data from Planck measurements of the cosmic microwave background (CMB) place important constraints on models with light dark matter (DM) and light mediators especially when both lie in the mass range below $sim 1 $ GeV. In models involving kinetic mi xing where the dark photon acts as the mediator, these constraints are easily satisfied and the appropriate DM relic density achievable if the DM is, e.g., a complex scalar, where $p$-wave annihilation occurs, or is the lighter component of a split pseudo-Dirac state where co-annihilation dominates. In both of these cases, although higher order in the dark gauge coupling, $g_D$, the corresponding annihilation processes including dark photon initial state radiation (ISR) will be dominantly $s$-wave with essentially temperature independent cross sections. The rates for these dark ISR associated processes, though not yielding cross sections large enough to contribute to the relic density, can still run into possible conflicts with the bounds arising from the CMB. In this paper we perform a preliminary study of the present and potential future constraints that the CMB imposes on the parameter spaces for both of these scenarios due to the existence of this dark ISR. Further analyses of the effects of dark ISR in DM annihilation is clearly warranted.
The new IR-improved Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) kernels recently developed by one of us is implemented in the HERWIG6.5 environment to generate a new MC, HERWIRI1.0(31), for hadron-hadron scattering at high e nergies. The comparison between the parton shower generated by the standard DGLAP-CS kernels and that generated by the new IR-improved DGLAP-CS kernels is illustrated using MC data. This is done for some of the respective exact {cal O}(alpha_s) corrected spectra using the seamless interfaces to MC@NLO while making comparisons with FNAL data. Some discussion of possible implications for LHC phenomenology is also presented.
We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wavefunction using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-r ainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wavefunctional.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا