ﻻ يوجد ملخص باللغة العربية
The new IR-improved Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) kernels recently developed by one of us is implemented in the HERWIG6.5 environment to generate a new MC, HERWIRI1.0(31), for hadron-hadron scattering at high energies. The comparison between the parton shower generated by the standard DGLAP-CS kernels and that generated by the new IR-improved DGLAP-CS kernels is illustrated using MC data. This is done for some of the respective exact {cal O}(alpha_s) corrected spectra using the seamless interfaces to MC@NLO while making comparisons with FNAL data. Some discussion of possible implications for LHC phenomenology is also presented.
By implementing the new IR-improved Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) kernels recently developed by one of us in the HERWIG6.5 environment we generate a new MC, HERWIRI1.0(31), for hadron-hadron scattering at high
Parton recombination is reconsidered in perturbation theory without using the AGK cutting rules in the leading order of the recombination. We use time-ordered perturbation theory to sum the cut diagrams, which are neglected in the GLR evolution equat
We introduce photon and gluon propagators in which the scalar polarization component is subtracted systematically by making use of the BRST invariance of the off-shell vector boson created from physical on-shell states. The propagator has the light-c
We summarize the recent progress in a new approach to precision LHC physics based on the IR-improved DGLAP-CS theory as it relates to a new MC friendly exponentiated scheme for precision calculation of higher order corrections to LHC physics in which
We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to t