ﻻ يوجد ملخص باللغة العربية
We construct spinning black hole solutions in five dimensions that take into account the mixed gauge-gravitational Chern-Simons term and its supersymmetric completion. The resulting entropy formula is discussed from several points of view. We include a Taub-NUT base space in order to test recent conjectures relating 5D black holes to 4D black holes and the topological string. Our explicit results show that certain charge shifts have to be taken into account for these relations to hold. We also compute corrections to the entropy of black rings in terms of near horizon data.
We investigate a vacuum decay around a spinning seed black hole by using the Israel junction condition and conclude that the spin of black hole would suppress a vacuum decay rate compared to that for a non-spinning case, provided that the surface of
We study solutions in the Plebanski--Demianski family which describe an accelerating, rotating and dyonically charged black hole in $AdS_4$. These are solutions of $D=4$ Einstein-Maxwell theory with a negative cosmological constant and hence minimal
We find hydrodynamic behavior in large simply spinning five-dimensional Anti-de Sitter black holes. These are dual to spinning quantum fluids through the AdS/CFT correspondence constructed from string theory. Due to the spatial anisotropy introduced
We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show th
In this paper we consider the generalized uncertainty principle in the tunneling formalism via Hamilton-Jacobi method to determine the quantum-corrected Hawking temperature and entropy for 2+1-dimensional noncommutative acoustic black holes. In our r