ﻻ يوجد ملخص باللغة العربية
We study solutions in the Plebanski--Demianski family which describe an accelerating, rotating and dyonically charged black hole in $AdS_4$. These are solutions of $D=4$ Einstein-Maxwell theory with a negative cosmological constant and hence minimal $D=4$ gauged supergravity. It is well known that when the acceleration is non-vanishing the $D=4$ black hole metrics have conical singularities. By uplifting the solutions to $D=11$ supergravity using a regular Sasaki-Einstein $7$-manifold, $SE_7$, we show how the free parameters can be chosen to eliminate the conical singularities. Topologically, the $D=11$ solutions incorporate an $SE_7$ fibration over a two-dimensional weighted projective space, $mathbb{WCP}^1_{[n_-,n_+]}$, also known as a spindle, which is labelled by two integers that determine the conical singularities of the $D=4$ metrics. We also discuss the supersymmetric and extremal limit and show that the near horizon limit gives rise to a new family of regular supersymmetric $AdS_2times Y_9$ solutions of $D=11$ supergravity, which generalise a known family by the addition of a rotation parameter. We calculate the entropy of these black holes and argue that it should be possible to derive this from certain ${cal N}=2$, $d=3$ quiver gauge theories compactified on a spinning spindle with appropriate magnetic flux.
We investigate a vacuum decay around a spinning seed black hole by using the Israel junction condition and conclude that the spin of black hole would suppress a vacuum decay rate compared to that for a non-spinning case, provided that the surface of
The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though not it is isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product
We study the thermodynamics of $AdS_4$ black hole solutions of Einstein-Maxwell theory that are accelerating, rotating, and carry electric and magnetic charges. We focus on the class for which the black hole horizon is a spindle and can be uplifted o
We generalize the first law of black hole mechanics to the rotating, charged C-metric and to the Ernst metric, both of which have the charged C-metric as a special case. All of these metrics are (3+1)-dimensional, have vanishing cosmological constant
Hawking radiation from black holes has been studied as a phenomenon of quantum tunneling of particles through their horizons. We have extended this approach to study the tunneling of Dirac particles from a large class of black holes which includes th