ﻻ يوجد ملخص باللغة العربية
We present a general formalism which allows us to derive the evolution equations describing one-dimensional (1D) and isotropic 2D interfacelike systems, that is based on symmetries, conservation laws, multiple scale arguments, and exploits the relevance of coarsening dynamics. Our approach becomes especially significant in the presence of surface morphological instabilities and allows us to classify the most relevant nonlinear terms in the continuum description of these systems. The formalism applies to systems ranging from eroded nanostructures to macroscopic pattern formation. In particular, we show the validity of the theory for novel experiments on ion plasma erosion.
Partial differential equations (PDE) have been widely used to reproduce patterns in nature and to give insight into the mechanism underlying pattern formation. Although many PDE models have been proposed, they rely on the pre-request knowledge of phy
We study a $mathcal PT$-symmetric scalar Euclidean field theory with a complex action, using both theoretical analysis and lattice simulations. This model has a rich phase structure that exhibits pattern formation in the critical region. Analytical r
Inspired by recent experimental observation of patterning at the membrane of a living cell, we propose a generic model for the dynamics of a fluctuating interface driven by particle-like inclusions which stimulate its growth. We find that the couplin
Active force generation by actin-myosin cortex coupled to the cell membrane allows the cell to deform, respond to the environment, and mediate cell motility and division. Several membrane-bound activator proteins move along it and couple to the membr
We present a theory to describe domain formation observed very recently in a quenched Rb-87 gas, a typical ferromagnetic spinor Bose system. An overlap factor is introduced to characterize the symmetry breaking of M_F=pm 1 components for the F=1 ferr