ﻻ يوجد ملخص باللغة العربية
Active force generation by actin-myosin cortex coupled to the cell membrane allows the cell to deform, respond to the environment, and mediate cell motility and division. Several membrane-bound activator proteins move along it and couple to the membrane curvature. Besides, they can act as nucleating sites for the growth of filamentous actin. Actin polymerization can generate a local outward push on the membrane. Inward pull from the contractile actomyosin cortex can propagate along the membrane via actin filaments. We use coupled evolution of fields to perform linear stability analysis and numerical calculations. As activity overcomes the stabilizing factors such as surface tension and bending rigidity, the spherical membrane shows instability towards pattern formation, localized pulsation, and running pulsation between poles. We present our results in terms of phase diagrams and evolutions of the coupled fields. They have relevance for living cells and can be verified in experiments on artificial cell-like constructs.
Inspired by recent experimental observation of patterning at the membrane of a living cell, we propose a generic model for the dynamics of a fluctuating interface driven by particle-like inclusions which stimulate its growth. We find that the couplin
We numerically examine mixtures of circularly moving and passive disks as a function of density and active orbit radius. For low or intermediate densities and/or small orbit radii, the system can organize into a reversible partially phase separated l
Partial differential equations (PDE) have been widely used to reproduce patterns in nature and to give insight into the mechanism underlying pattern formation. Although many PDE models have been proposed, they rely on the pre-request knowledge of phy
Many cell membrane proteins that bind to actin form dynamic clusters driven by contractile flows generated by the actomyosin machinery at the cell cortex. Recent evidence suggests that a necessary condition for the generation of these protein cluster
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, is espe