ﻻ يوجد ملخص باللغة العربية
The mysterious `dark energy needed to explain the current observations, poses a serious confrontation between fundamental physics and cosmology. The present crisis may be an outcome of the (so far untested) prediction of the general theory of relativity that the pressure of the matter source also gravitates. In this view, a theoretical analysis reveals some surprising inconsistencies and paradoxes faced by the energy-stress tensor (in the presence of pressure) which is used to model the matter content of the universe, including dark energy.
We show that the action of Einsteins gravity with a scalar field coupled in a generic way to spacetime curvature is invariant under a particular set of conformal transformations. These transformations relate dual theories for which the effective coup
A number of recent observations have suggested that the Einsteins theory of general relativity may not be the ultimate theory of gravity. The f(R) gravity model with R being the scalar curvature turns out to be one of the best bet to surpass the gene
We study the viability conditions for the absence of ghost, gradient and tachyonic instabilities, in scalar-torsion $f(T,phi)$ gravity theories in the presence of a general barotropic perfect fluid. To describe the matter sector, we use the Sorkin-Sc
We propose a modified gravity theory that propagates only two local gravitational degrees of freedom and that does not have an Einstein frame. According to the classification in JCAP 01 (2019) 017 [arXiv:1810.01047 [gr-qc]], this is a type-II minimal
We study a metric cubic gravity theory considering odd-parity modes of linear inhomogeneous perturbations on a spatially homogeneous Bianchi type I manifold close to the isotropic de Sitter spacetime. We show that in the regime of small anisotropy, t