ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadening effects due to alloy scattering in Quantum Cascade Lasers

174   0   0.0 ( 0 )
 نشر من قبل Nicolas Regnault
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on calculations of broadening effects in QCL due to alloy scattering. The output of numerical calculations of alloy broadened Landau levels compare favorably with calculations performed at the self-consistent Born approximation. Results for Landau level width and optical absorption are presented. A disorder activated forbidden transition becomes significant in the vicinity of crossings of Landau levels which belong to different subbands. A study of the time dependent survival probability in the lowest Landau level of the excited subband is performed. It is shown that at resonance the population relaxation occurs in a subpicosecond scale.



قيم البحث

اقرأ أيضاً

A model of sequential resonant tunneling transport between two-dimensional subbands that takes into account explicitly elastic scattering is investigated. It is compared to transport measurements performed on quantum cascade lasers where resonant tun neling processes are known to be dominating. Excellent agreement is found between experiment and theory over a large range of current, temperature and device structures.
We show that mid infrared transmission spectroscopy of a quantum cascade laser provides clear cut information on changes in charge location at different bias. Theoretical simulations of the evolution of the gain/absorption spectrum for the $lambda si m$ 7.4 $mu$m InGaAs/AlInAs/InP quantum cascade laser have been compared with the experimental findings. Transfer of electrons between the ground states in the active region and the states in the injector goes in hand with a decrease of discrete intersubband absorption peaks and an increase of broad high-energy absorption towards the continuum delocalised states above the barriers.
We report on a new design of terahertz quantum cascade laser based on a single, potential-inserted quantum well active region. The quantum well properties are engineered through single monolayer InAs inserts. The modeling is based on atomistic, spds* tight-binding calculations, and performances are compared to that of the classical three-well design. We obtain a 100% increase of the oscillator strength per unit length, while maintaining a high, nearly temperature-independent contrast between phonon-induced relaxation times of the upper and lower lasing states. The improved performances are expected to allow THz lasing at room temperature.
166 - I.A. Dmitriev , R.A. Suris 2007
Quantum cascade lasers are recognized as propitious candidates for future terahertz optoelectronics. Here we demonstrate several definite advantages of quantum dot cascade structures over quantum well devices, which suffer fundamental performance lim itations owing to continuous carrier spectrum. The discrete spectrum of quantum dots opens an opportunity to control the non-radiative relaxation and optical loss and also provides for more flexibility in the choice of an optical and electrical design of the laser.
We derive a density matrix (DM) theory for quantum cascade lasers (QCLs) that describes the influence of scattering on coherences through a generalized scattering superoperator. The theory enables quantitative modeling of QCLs, including localization and tunneling effects, using the well-defined energy eigenstates rather than the ad hoc localized basis states required by most previous DM models. Our microscopic approach to scattering also eliminates the need for phenomenological transition or dephasing rates. We discuss the physical interpretation and numerical implementation of the theory, presenting sets of both energy-resolved and thermally averaged equations which can be used for detailed or compact device modeling. We illustrate the theorys applications by simulating a high performance resonant-phonon terahertz (THz) QCL design which cannot be easily or accurately modeled using conventional DM methods. We show that the theorys inclusion of coherences is crucial for describing localization and tunneling effects consistent with experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا