ﻻ يوجد ملخص باللغة العربية
A model of sequential resonant tunneling transport between two-dimensional subbands that takes into account explicitly elastic scattering is investigated. It is compared to transport measurements performed on quantum cascade lasers where resonant tunneling processes are known to be dominating. Excellent agreement is found between experiment and theory over a large range of current, temperature and device structures.
We show that mid infrared transmission spectroscopy of a quantum cascade laser provides clear cut information on changes in charge location at different bias. Theoretical simulations of the evolution of the gain/absorption spectrum for the $lambda si
Based on the dielectric continuum model, we calculated the phonon assisted tunneling (PAT) current of general double barrier resonant tunneling structures (DBRTSs) including both symmetric and antisymmetric ones. The results indicate that the four hi
Resonant phonon depopulation terahertz quantum cascade lasers based on vertical and diagonal lasing transitions are systematically compared using a well established ensemble Monte Carlo approach. The analysis shows that for operating temperatures bel
We study the quantum charge noise and measurement properties of the double Cooper pair resonance point in a superconducting single-electron transistor (SSET) coupled to a Josephson charge qubit. Using a density matrix approach for the coupled system,
We study theoretically resonant tunneling of composite fermions through their quasi-bound states around a fractional quantum Hall island, and find a rich set of possible transitions of the island state as a function of the magnetic field or the backg