ﻻ يوجد ملخص باللغة العربية
Stimulated by recent advances in isolating graphene, we discovered that quantum dot can be trapped in Z-shaped graphene nanoribbon junciton. The topological structure of the junction can confine electronic states completely. By varying junction length, we can alter the spatial confinement and the number of discrete levels within the junction. In addition, quantum dot can be realized regardless of substrate induced static disorder or irregular edges of the junction. This device can be used to easily design quantum dot devices. This platform can also be used to design zero-dimensional functional nanoscale electronic devices using graphene ribbons.
We calculate quantum transport for metal-graphene nanoribbon heterojunctions within the atomistic self-consistent Schrodinger/Poisson scheme. Attention is paid on both the chemical aspects of the interface bonding as well the one-dimensional electros
We consider a square lattice configuration of circular gate-defined quantum dots in an unbiased graphene sheet and calculate the electronic, particularly spectral properties of finite albeit actual sample sized systems by means of a numerically exact
We investigate the conductivity $sigma$ of graphene nanoribbons with zigzag edges as a function of Fermi energy $E_F$ in the presence of the impurities with different potential range. The dependence of $sigma(E_F)$ displays four different types of be
Topological insulators (TI) are bulk insulators that possess robust chiral conducting states along their interfaces with normal insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which conventional pro
Finite graphene nanoribbon (GNR) heterostructures host intriguing topological in-gap states (Rizzo, D. J. et al.~textit{Nature} textbf{2018}, textit{560}, 204]). These states may be localized either at the bulk edges, or at the ends of the structure.